

Love)

The TUTOR Language

The TUTOR Language

Bruce Arne Sherwood
Computer-based Education Research Laboratory

and Department of Physics
University of Illinois

Urbana, Illinois

CONTR.OL DATA
EDUCATION COMPANY
I';:J E:::\ a service of~.E:::'.'CONTRPL DATA CO""ORJ'.TION

© 1977 by Bruce Arne Sherwood.

All rights reserved. No part of this mate-
rial may be reproduced by any means
without permission in writing from the
publisher and the author.

ISBN: 0-918852-00-5

Library of Congress Catalog Card Number: 77-77589

Printed in the United States of America

Contents

1 Introduction 1
How to Use This Book 1
Sample PLATO Lessons 3
The PLATO Keyboard 8
Basic Aspects of TUTOR 13

2 More on Creating Displays 23
Coarse Grid and Fine Grid 23
The -pox-, -vector-, and -circle- Commands 25
Large-size Writing: -size- and -rotate- 26
Animations (Moving Displays): -erase-

and -pause- 28
-pause-, -time-, and -catchup- 30
The -mode- Command 33
Automated Display Generation 35

3 Building Your Own Tools: The -do-
Command 39

4 Doing Calculations in TUTOR 43
Giving Names to Variables: -define- 47
Repeated Operations: The Iterative -do- 49
Showing the Value of a Variable 51
Passing Arguments to Subroutines 53

vii

Contents

5 Sequencing of Units Within a Lesson 59
Summary of Sequencing Commands 69
The -helpop- Command: "Help on Page" 72
The -imain- Command 73

6 Conditional Commands 77
Logical Expressions 80
The Conditional -write- Command (-writec-) 82
The Conditional -calc- Commands: -calcc-

and -calcs- 84
The Conditional -mode- Command 85
The -goto- Command 85
The Conditional Iterative -do- 90
The -if- and -else- Commands 91

7 Judging Student Responses 95
Student Specification of Numerical

Parameters 101
Student Specification of Non-Numerical

Parameters 104
Difference Between Numeric and

Alphabetic Information 105
More On -answer· and -wrong-

(Including -list- and -specs-) 106
Building Dialogs With -concept-

and -vocabs- 111
Numbering Vocabulary Words 117
The -judge- Command 118
Finding Key Words: The -match-

and -storen- Commands 123
Numerical and Algebraic Judging:

-ansv- and -wrongv- 126
Handling Scientific Units: -ansu-,

-wrongu-, and -storeu- 133
The -exact- and -exactc- Commands 136
The -answerc- Command: A Language Drill 137
Summary 139

8 More About Judging 141

Stages in Processing the -arrow- Command 141
Repeated Execution of -join- 142

viii

Contents

Judging Commands Terminate Regular
State 144

The -goto- is a Regular Command 146
Interactions of -arrow- with -size-, -rotate-,

-long-, -jkey-, and -copy- 149
Applications of -jkey- and -ans- 151
Modifying the Response: -bump- and -put- 156
Manipulating Character Strings 159
Catching Every Key: -pause-, -keytype-,

and -group- 164
Touching the Screen 168
Summary 169

9 Additional Display Features 171

More on the -write- Command 171
Extensions to the Basic Character Set 175
The "initial entry unit" (ieu) 177
Smooth Animations Using Special

Characters 178
Creating a New Character Set 179
Micro Tables 181
The Graphing Commands: Plotting

Graphs with Scaling and Labeling 182
Summary of Line-drawing Commands:

-draw-, -gdraw-, -rdraw- 185
The -window- Command 190
More on Erasing: The -eraseu- Command 192
Keeping Things on the Screen:

"inhibit erase " 196
Interaction of "inhibit erase" with -restart- 199
The -char- and -plot- Commands 199
The -dot- Command 200

10 Additional Calculation Topics 201

Defining Your Own Functions 202
Arrays 204
Segmented Variables 207
Branching Within a Unit: -branch-

and -doto- 212
Array Operations 214
Integer Variables and Bit Manipulation 217
Byte Manipulation 229

ix

Contents

Vertical Segments 230
Alphanumeric to Numeric: The -compute-

Command 231
The -find- Command 235
The -exit- Command 236

11 Manipulating Data Bases 237

The -common- Command 237
The Swapping Process 240
Common Variables and the Swapping

Process 243
The -storage- Command 246
Using -datasets- 248
Sorting Lists 248

12 Miscellany 249

Other Terminal Capabilities 249
Student Response Data 251
Additional Tools for Teaching Foreign

Languages 252
Routers and -jumpout- 254
Instructor Mode 255
Special "terms" 255

APPENDICES 257

Appendix A. Where to Get Further
Information 258

Appendix B. List of TUTOR Commands 259
Additional TUTOR Commands

Not Discussed in This Book 260
Appendix C. List of Built-in -Calc-

Functions 261
System Variables 262

x

Preface

The PLATO IV computer-based education system was developed in
the Computer-based Education Research Laboratory (CERL) of the
University of Illinois, Urbana. PLATO IV is the result of 15 years of
research and development effort led by Donald Bitzer, director of CERL.
The University of Illinois system presently links 950 graphical-display
terminals to a large Control Data Corporation computer in Urbana. Some
of these terminals are located as far away as San Diego and Washington,
D.C. Additional PLATO systems with their own complements of termi-
nals are located elsewhere in the United States. Students are individually
tutored at terminals by interacting with PLATO lesson materials created
by teachers. There are over 4,000 hours of PLATO lessons already
available. These lessons span a wide range of subject areas and are used
by students in elementary schools, community colleges, military training
bases, universities, and commercial training programs. Authors of lesson
materials are teachers who use the TUTOR language to tell PLATO how
to interact with students on an individual basis. This book explains the
TUTOR language in detail and is intended to help authors write quality
lesson materials.

In 1967, Paul Tenczar (then a graduate student in zoology) conclud-
ed that existing methods of creating computer-based lesson material on
the earlier PLATO III system were unnecessarily difficult. As a result he
originated the TUTOR language. There followed a rapid increase in the
number of authors and in the number and degree of sophistication of

v

Preface

the lessons they wrote. This active author community in turn spurred the
continual development and refinement of TUTOR by requesting addi-
tional needed features. In 1970, CERL began implementing the PLATO
IV system, which afforded a rare opportunity to take stock of the
evolution of TUTOR up to that point and make a fresh start. Many useful
simplifications were made, and many important features were added. The
growth of PLATO IV into a continental network brought together an
ever-wider spectrum of authors through the rich interpersonal communi-
cations facilities available on PLATO, and the suggestions and criticisms
from these authors contributed to the present form of the TUTOR
language. Also of great importance has been the large number of students
who have used PLATO lessons, and whose experiences have influenced
the development of TUTOR to meet their needs. The TUTOR language
described in this book is, therefore, based on heavy use-testing.

In the earliest phase Paul Tenczar and Richard Blomme were mainly
responsiblc for TUTOR development. Since then, many people have
been involved, some as full-time CERL staff members and some as high
school, undergraduate, or graduate students. It is impossible to adequate-
ly acknowledge the various contributions, and difficult even to list all of
those who have playcd a major role, but an attempt should be made. Paul
Tenczar is head of TUTOR development. Full-time people have included
David Andersen, Richard Blomme, John Carstedt (Control Data), Ruth
Chabay, Christopher Fugitt, Don Lee, Robert Rader, Donald Shirer,
Michael Walker, and this author. They have been assisted by James Parry
and Masako Secrest, and by Doug Brown, David Frankel, Sherwin
Gooch, David Kopf, Kim Mast, Phil Mast, Marshall Midden, Louis
Steinberg, Larry White, and David Woolley. William Golden has also
provided useful advice.

All of these people have been involved mainly with "software", the
programming of the PLATO computer in such a way as to permit authors
and students to write and use computer-based lessons. Of equal impor-
tance to the technical success of PLATO are the CERL scientists,
engineers, and technicians who invented, designed, and implemented the
unique terminals and telecommunications devices ("hardware") which
form the PLATO educational network. CERL personnel who have been
heavily involved in hardware development include Donald Bitzer, Jack
Stifle, Fred Ebeling, Michael Johnson, Roger Johnson, Frank Propst,
Dominic Skaperdas, Gene Slottow, and Paul Tucker.

The latter part of Chapter 1 is adapted from a PLATO III document,
"The TUTOR Manual", by H. A. Avner and P. Tenczar.

I thank Elaine Avner and Jeanne Weiner for editorial assistance,
Sheila Knisley for typing, and Stanley Smith for photographic work. I
appreciate the encouragement William Golden gave me to finish the task.

vi

Introduction 1

How to Use This Book

This book describes in detail the TUTOR language, which is used by
teachers to create lesson materials on the PLATO IV computer-based
education system. Teachers use the TUTOR language to express to the
PLATO computer how PLATO should interact with individual students.
Students and teachers interact with PLATO through terminals each of
which includes a plasma display panel screen and a typewriter keyboard,
as shown. Using TUTOR, an author of a computer-based lesson can tell
PLATO how to display text, line drawings, and animations on the
student's screen. The author can ask PLATO to calculate for the student,
to offer the student various sequencing options, and to analyze student
responses.

The TUTOR language was originally created and developed for
educational purposes. However, educational interactions are probably
the most subtle and difficult of all the interactions a person might have
with the author of materials presented through a computer. It is now clear
that other kinds of interactions are also handled well by means of
TUTOR, including recreation and communication. Nevertheless, for
concreteness this book will concentrate on the instructional applications
of TUTOR.

1

The TUTOR Language

It is hoped that you have already studied the textbook "Introduction
to TUTOR" by J. Chesquiere, C. Davis, and C. Thompson, and the
associated PLATO lessons. These materials are designed to teach you not
only basic aspects of TUTOR but also how to create and test your own
lessons on the PLATO system. The present book, "The TUTOR Lan-
guage," does not attempt to describe the latter aspects, such .as how to
insert or delete parts of your lesson and how to tryout your new lesson.
It does cover all aspects of the TUTOR language: that is, what state-
ments to give PLATO but not how to type these statements into a
permanent PLATO lesson space. By studying this book you could, in
principle, write down on paper a lesson expressed in the TUTOR lan-
guage, but when you go to a PLATO terminal to type in your new les-
son, you may not know what buttons to push to get started. Also, this
book discusses TUTOR in more detail than does "Introduction to
TUTOR," which makes "The TUTOR Language" less appropriate for
your initial study.

It is also hoped that as you study this book you will try things out at a
PLATO terminal. TUTOR is designed for interactive use, in which case
an author writes a short segment of a lesson, tries it, and revises it on the
basis of the trial. Normally, the sequence write, try, revise, and try again
takes only a few minutes at a PLATO tenninal. It is far better to create a
lesson this way than to write out a complete lesson on paper, only to find
upon testing that the overall structure is inappropriate.

It is also helpful to try the sample lesson fragments discussed in this
book. It is literally impossible to describe fully in this book how the
examples would appear on a PLATO terminal. The PLATO medium is
far richer than the book medium. One striking example is the PLATO
facility fonnaking animations such as a car driving across the screen. As
another example, you must experience it directly to appreciate how easy it
is at a PLATO tenninal to draw a picture on the screen (by moving a
cursor and marking points), then let PLATO automatically create the
corresponding TUTOR language statements which would produce that
picture. PLATO actually writes a lesson segment for you!

This book is written in an infonnal style. Sometimes, when the
context is appropriate, topics are introduced in a different chapter than
would be required by strict adherence to a formal classification scheme.
In these cases, the feature is at least mentioned in the other chapter, and
the index at the end of the book provides an extensive cross-linkage. The
order of presentation, emphasis, examples, and counter-examples are all
based on extensive experience with the kinds of questions working
authors tend to ask about TUTOR.

2

If you are a fairly new TUTOR author, read this book lightly to get
acquainted with the many features TUTOR offers. Plan to return to the
book from time to time as your own authoring activities lead you to seek
detailed information and suggestions. Your initial light reading should
help orient you to finding appropriate sections for later intensive study.
After you feel you know TUTOR inside and out, read this book carefully
one last time, looking particularly for links among diverse aspects of the
language. This last reading will mean much more to you than the first!

If you are already an experienced TUTOR author, read this book
carefully with two goals in mind: to spot features unused in your past
work but of potential benefit, and to acquire a more detailed understand-
ing of the structural aspects of the language, with particular emphasis on
judging.

The remainder of this introductory chapter contains some interesting
examples of existing PLATO lessons, a description of the PLATO
keyboard including the use of the special function keys, and a review of
the most basic aspects of TUTOR.

Sample PLATO Lessons

Figures 1-1 through 1-6 on the following pages give several examples
of interesting PLATO lessons. All were written in the TUTOR language.
They have been chosen to give you some idea of the broad range of
TUTOR language capabilities. Each example is illustrated with a photo-
graph of the student's scre.cn at a significant or representative point in the
lesson. (See the note at the bottom of pg. 7.)

The PLATO terminal's display screen consists of a plasma display
panel which contains 512 horizontal electrodes and 512 vertical elec-
trodes mounted on two flat plates of glass between which is neon gas.
Any or all of the quarter-million (512x512) intersections of the hori-
zontal and vertical electrodes can be made to glow as a small orange
dot. (The word "plasma" is the scientific name for an ionized gas; the
orange glow is emitted by ionized neon gas.) As can be seen in the
sample photographs, the PLATO terminal can draw lines and circles
on the plasma panel as well as display text using various alphabets.
Both drawings and text are actually made up of many dots. TUTOR has
many display features for writing or erasing text and drawings on the
plasma panel.

INTRODUCTION

3

The TUTOR Language

Type >,our que~t ion about the unknown and then
pr~ NEXT.

When >,OUhave ident i fied the compound pre'l!l5 !lACK.

> does it di~~olve in H20

It is eliaht1y soluble in water.

SCORE •

For table .. of data pre~ DATA. To review preas LAB.

For help press HELP.

Fig. '-1. Dialog in which a chemistry stu-
dent attempts to identify an unknown
compound by asking experimental ques-
tions. (Stanley Smith)

4

LOCOMOTIVE' 5 Turn:

Your number!!: 3 2 4
Your move: .. (3+2) ..) 28

1

'Q'• \ 3

5 •

66 68

Fig. '-2. Game of mathematical strategy in
which two grade-school children compete
in constructing advantageous mathemati-
cal expressions from random numbers ap-
pearing on the spinners. (Bonnie Ander-
son)

b

O'\':'~\) (J1,-3). A = 11.4

fB",f\ ...,) (-3, B... 5.8 <::m

The PO)) IJ,ta1b=d fr0i>1 .' a" to
displacements: fl'<:,>r,) "a," tc
move from "b" to "s". No"~
from "a" to ",~":

means 0 f t'L'O
lc>wed

the gid

Fig. 1-3. Tutorial on vectors in which the
student walks a boy and girl around the
screen and measures their vector displace-
ments. (Bruce Sherwood)

INTRODUCTION

Translate:

The third man 15 a ~eciali3t in phyeice. ok

) The airl ,~~~ !~~~~2the ~mall museum. no

The girl wae goina toward a small museum.

Fig. 1-4. Russian sentence drill. The mark-
ings under the student's translation of the
second sentence indicate incorrect words
and misspellings. (Constance Curtin)

5

The TUTOR Language

Add par·ts to the cell b·eIOI,A) to 5;'.lntheslze
the protein chain ...

Leuclne--Aspartic acid--Glu.tamlC 6.Cld

'---·~~----~-···----·-i-LellC 1ne---~

o-A:5partic a.<::id
c~;-(;luta.mlc,~."::ldGACTTAGTC

CTGAATCF'1G

CUGAAUCAG

L-.~_ .._. .__ . _

llihat 1.',."'I..dd '/OU Idee t·:, .•.:kP

(HELP, DATA. LAB, E,ACV)

Fig. 1-5a

m·1A

GACTTAGTC

CU::;AAUCAG--~-'---'----
rn-F'I'·IA

In pa,r·t icuI ar-,

Fig. 1-5b

Graphical illustration of the biochemical steps involved
in protein synthesis. The student introduces appropriate
DNA, RNA, etc., into an initially empty cell, then watches
the synthesis proceed. Here the synthesis breaks down
for lack of a crucial part. (Paul Tenczar)

6

Kiom da flor>oj estas? k'lar jes

These are actual photographs of the plasma panel. The display shows orange text
and drawings on a black background, but the pictures are shown here as black on
white for ease of reproduction. The plasma panel size is 22 em. square (8.5 in.
square).

Kiom da steloj estas?

Kiom da fisoj estas?

~ ~ ~ ~ 'Y~

@ ~> ENl ~

~ ~ ~ ,:(1# ,,$

Fig. 1-6. Usi'ng graphics to teach Esperan-
to without using English. Here the stars
have been circled to emphasize the stu-
dent's mistake in counting. (Judith Sher-
wood)

INTRODUCTION

7

The TUTOR Language

Fig. 1-7

The PLATO Keyboard

Every PLATO terminal has a keyboard like the one pictured above.
The keyboard has a number of special features which are closely related
to certain aspects of the TUTOR language, such as the HELP key which
allows students to access optional sections of a lesson written in TUTOR.

The central white keys include letters, the numbers 0 through 9 along
the top row, and punctuation marks. Note that the numbers 0 and 1 are
different from the letters 0 and 1. The zero has a slash through it to
distinguish it unmistakably from the letter o. Except for these distinc-
tions, the white keys are the same as the keys on a standard typewriter.
Capital letters are typed by pressing either of the SHIFT keys while
striking a letter key. Some keys show two different characters, such as the
keys in the upper row, e.g., depressing a SHIFT key while striking a "4"
produces a "$".*

Eight of the letter keys (d, e, w, q, a, z, x, and c all clustered around
the s key) have arrows marked on them pointing in the eight compass
directions. Typing "e" with a SHIFT key depressed normally produces a
capital "E" on the screen, not a northeast arrow. The directional arrows
are shown because these keys are sometimes used to control the motion of
a cursor or pointer on the screen. In this context, the student presses an
un-shifted "e" and the lesson interprets this as a command to move a
cursor northeast on the screen, rather than a command to display an "e"

*Since this book deals with technical entities, which are set off by quotation marks, it is
necessary to violate certain rules of punctuation.

8

on the screen. Such redefinitions of what a key should do in a particular
context provide enormous flexibility. Another interesting example is the
use of the keyboard to type Russian text in the Cyrillic alphabet.

Spaces (blank characters) are produced by striking the long "space
bar" at the bottom of the keyboard. Holding down a shift key while
hitting the space bar produces a backspace. An example of the back-
space's use is in underlining. The underlined word "~f!t"is produced by
typing "c", "a", "t", backspace, backspace, backspace, underline, under-
line, underline (underline is shift-6, not to be confused with the minus
sign or dash). Typing "T", backspace, "H", will superimpose the two
letters, making a " HI."The backspace is used for superimposing charac-
ters, whereas the ERASE key (just to the right of the letter p) is used to
correct typing errors.

A few black keys on the left side of the keyboard are mainly
associated with mathematical operations: they include plus, minus (also
used as a dash), times and divide (-7 is equivalent to the slash /). The ¢: is
used in TUTOR calculations to assign values to variables. The TAB key
is most often used by authors writing lessons rather than by students
studying lessons. The TAB key's function is similar to the tabulate
function on standard typewriters, e.g., pressing TAB once is equivalent to
hitting the space bar as many times as is necessary to reach a preset
column on the screen. Shift-TAB, called CR for "carriage return", to
continue the typewriter analogy, moves typing down one line and to the
left margin. Shift-plus produces a ~ (which means summation in mathe-
matical notation) and shift-minus produces a A (which means difference
in mathematical notation).

The black keys at the right of the keyboard are called "function" keys
because they carry out various functions rather than displaying a charac-
ter on the screen. By far the most important function key is NEXT. The
cardinal rule for studying PLATO lessons is "When in doubt, press
NEXT." Pressing NEXT causes the next logical thing to happen, such as
proceeding on to a new display, asking for a response to be judged,
erasing an entire incorrect response, etc. The second most important
function key is ERASE, which is used to correct typing errors. Each press
of ERASE erases one character from the screen. Pressing shift-ERASE
(abbreviated as ERASEl) erases an entire word rather than a single
character. Note the difference from the backspace (shift-space) which
does not erase and is used for superimposing characters.

The EDIT key is also used for correcting typing. Suppose you have
typed "the quik brown fox" when you notice the missing "c" in "quick".
You could press ERASEl twice to erase "fox" and "brown", use ERASE
to get rid of the "k", then retype "ck brown fox". The EDIT key makes

INTRODUCTION

9

The TUTOR Language

such retyping unnecessary. Instead of hitting ERASEI, you press EDIT
which makes the entire sentence disappear. Press EDIT again, and the
entire first word "the" appears. Press EDIT again and you see "the quik"
on the screen. Use ERASE to change this to "the quick". Now hit
EDIT twice to bring in the words "brown" and "fox". The final result is
"the quick brown fox". This takes longer to describe here in words, but
pressing the EDIT key a few times is much easier and faster than doing
all the retyping that would otherwise be necessary. The EDITI key
(shift-EDIT) brings back the entiJ;eremaining portion of a sentence. For
example, after inserting the "c" to make "the quick", you could hit
EDITl once to bring back "brown fox". You should type some sentences
at a PLATO terminal and study the effects produced by EDIT and
EDIT!.

The COpy key is closely related to the EDIT key and is used mainly
by authors. While EDIT and EDITI cycle through words you have just
typed, COpy and COPYI bring in words from a pre-defined "copy"
sentence. These keys are used heavily when changing or inserting
portions of a lesson.

The display "a2b" can be made by hitting "a", then SUPER, then
"2", then "b". SUPER makes a non-locking movement higher on the
screen for typing superscripts. Notice that SUPER is struck and released,
not held down while typing the superscript. Striking shift-SUPER makes
a locking movement, so that the sequence "a", shift-SUPER, "2", "b"
will produce "a2b". The SUB key is similar to SUPER. For example, the
display "H20" is made by typing "H", SUB, "2", "0". A locking
subscript results from shift-SUB, which is also what is used to get down
from a locking superscript. Similarly, shift-SUPER will move up from a
locking subscript.

There are 34 additional characters not shown on the keyboard which
are accessible through the MICRO key. For example, striking and
releasing the MICRO key followed by hitting "p" produces a "'IT". The
sequence MICRO-a produces an a. Typing "e", MICRO, "q", produces,
"e", whereas typing "E", MICRO, "q", produces "E". Note the "auto-
backspacing" which not only backspaces to superimpose the accent mark
but also places the accent mark higher on a capital letter. Six MICRO
options involve autobackspacing: '(q), '(e), ..(u), ~(x), - (n), and. (c).
The last accent mark (MICRO-c) is used for creating cedillas (<; and C;)
and does not involve a different height for capitals. It is easy to remem-
ber these keys because of natural associations. The' and' accent marks
are on the q and e keys which have the' and.?' arrows marked on
them. The umlaut .. usually appears on a "u" (German ti). The circum-
fle~ ~ is on the x key. The tilde - usually appears on an "n" (Spanish fi).

10

The Greek letters <x, /3, 3, e, A, f.L, 'IT, p, IT, and ware produced by typing
MICRO followed by a, b, d, t, 1,m, p, r, s, or w. Here is a complete list:

key MICRO-key key MICRO-key

~ ~ ("embed" symbols)1 }>
a <X (alpha) < (shift-~) :S (less than or equal)
b /3 (beta) > (shift-1) ?: (greater than or equal)
d 3 (delta) [(shift-2) {

(braces)
t e (theta) J (shift-3) }
I A (lambda) $ (shift-4) # (pound sign)

m f.L (mu) 5 @ (each)
p 'IT (pi) 6 ~ (arrow)
r p (rho) # (not equal)
s (j (sigma) (shift-"") (identity)
w w (omega) (approximate)
q (grave) 0 0 (degree sign)
e , (acute) I (vertical line)
c • (cedilla) D - (east)
u .. (umlaut) W i (north)
n - (tilde) A -- (west)
x A (circumflex) X ~ (south)
C © (copyright) t (special)
Q (leftward writing) + & (ampersand)
R (rightward writing) / \ (backwards slash)

CR (shift- (special TAB for x 0 (matrix multiply)
TAB) leftward writing) (shift-x) x (vector product)

These are the standard MICRO definitions. You can change these by
setting up your own micro table. This is discussed in Chapter 9.

The standard character set includes all the characters we have seen so
far, including the Greek letters and other characters accessible through
the MICRO key. The shifted MICRO key, called FONT, lets you shift
from this standard set of characters to another set of up to 126 special
characters which you can design.

These special characters might be the Cyrillic, Arabic, or Hebrew
alphabet, or they can be pieces of pictures, such as the characters e; , =""': ,
and ~ which form a car when displayed side by side: e~. Unlike
MICRO which only affects the next keypress, FONT locks you in the

INTRODUCTION

11

The TUTOR Language

alternate "font" or character-set. You press FONT again to return to
the standard font. The creation of new character sets is described in
Chapter 9.

If the author activates it, the ANS key can be used by the student to
get the correct answer to a question. This is discussed in Chapter 7. The
shifted ANS key, TERM, when pressed causes the question "what term?"
to appear at the bottom of the screen. At this point, you can type anyone
of various keywords in order to move to a different part of the lesson. The
use of TERM is discussed in Chapter 5.

If you set up an optional help sequence, the student can press the
HELP key to enter the sequence. The student can then press BACK (or
BACK!) to go back to where he or she was when originally requesting
help, or will be brought back to the original point upon completion of the
help sequence. You could also specify a different help sequence accessi-
ble by pressing HELPI (shift-HELP). The six keypresses HELP,
HELPl, LAB, LABl, DATA, and DATAl can, if activated by the author,
allow the student a choice of six different help sequences. You can also
activate NEXT, NEXTl, BACK and BACKl, but these simply let the
student move around in the lesson without remembering or returning to
the original place. In other words, these four keys do not initiate help
sequences. Usually, BACK is reserved for review sequences or similar
situations where you want to back up.

The STOP key throws out output destined for the terminal. A useful
example is the case of skimming through pages of text in an on-line
catalog or collection of notes. If you decide you want to skip immediately
to the next page, you might press STOP in order to avoid the wait
required to finish plotting the present page.

The STOPI or shift-STOP key plays a crucial role in PLATO us-
age. You press STOPI to leave a lesson you are studying. When a stu-
dent is ready to leave the terminal he or she presses STOPl, which per-
forms a "sign-out" function. Among other things, the sign-out procedure
brings the student's permanent status record up to date so that days later
he or she can sign-in and resume working at the same point in the
lesson. When an author presses STOPI to leave a lesson that he or she
is testing, the author is taken back to a point in the PLATO system
where he or she can make changes in the lesson before trying it again.

The key next to HELP, with the square (0) on it, is similar to the
EDIT key, but retrieves one character at a time, instead of a whole word.
It is particularly useful when used in association with the EDIT key. The
shifted square key is presently used as the ACCESS key, as described in
Chapter 9.

12

Basic Aspects of TUTOR

In their simplest form, lessons administered by the PLATO interac-
tive educational system consist of a repeating sequence: a display on the
student's screen followed by the student's response to this display. The
display information may consist of sentences, line drawings, graphs,
animations (moving displays)-nearly anything of a pictorial nature, and
in any combination. The student responds to this display by pressing a
single key (e.g., the HELP or NEXT key), by pointing at a particular area
of the screen, by typing a word, sentence, or mathematical expression, or
even by making a geometrical construction. Lesson authors provide
enough details about the possible student responses so that PLATO can
maintain a dialog with the student. The sequence of a display followed
by a response is the basic building block of a lesson and is called a "unit"
in the TUTOR language. This "display-response" terminology is conve-
nient but is not intended to imply that the student is in a subservient
position. Often what we will conventionally call the student "response,"
is a question or a command issued to PLATO to respond with a display of
some kind.

An author constructs a lesson by writing one unit at a time. For each
unit, the author uses the TUTOR language to specify: (1) the display that
will appear on the student's screen; (2) how PLATO is to handle student
responses to this display; and (3) how the current unit connects to other
units.

A statement written in the TUTOR language appears as follows:

write How are you today?

command tag

The first part of the statement (-write-) is called the "command," while
the remainder (How are you today?) is called the "tag." Command names
mnemonically represent PLATO functions. The tag gives additional
specifications on how the function is to be carried out. In this ease, the
tag specifies what text is to be written on the screen.

The following is an entire unit written in TUTOR. Figure 1-8 shows
what a student would see on the screen while working on the unit.

INTRODUCTION

13

The TUTOR Language

unit
at
write
draw
arrow
answer
write
wrong
write

14

geometry
1812
What is this figure?
510; 1510; 1540;510
2015
<it,is,a> (right,rt) triangle
Exactly right!
<it,is,a> square
Count the sides! What i~ thi~ fiaure?

) a square no

Count the l!!Iid.e.5~

Fig. 1-8

We will discuss each statement of this unit in detail.

unit geometry

The -unit- statement initiates each unit. The tag (geometry) will
become useful later when units are connected together to form a lesson.
Each unit must have a name. No two units in a lesson may have the same
name.

at 1812

The -at- statement specifies at what position on the screen a display
will occur. The tag "1812" means that we will display something on the
18th line in the 12th character position. The top line of the screen is line 1
and the bottom line is line 32. There are 64 character positions going from
01 at the left edge of the screen to 64 at the right. Thus, 101 refers to line
1, character position 01 (the upper left corner of the screen), while 3264
refers to line 32, character position 64 (the lower right corner of the
screen). Note that "0" means the number zero, as distinct from the letter

6'1 character po&itio"s

84 .e 12 16 28 24 28 32 36 4. 44 48 52 56 68 64
I
2
3
'I
5
6
7
8
9

3 :~
2 12

13
1'1
15

i 16
n 17
e :~ 1-----' Line 18, character poeition 12.

e 2.
21
22
23
2'1
25
26
27
28
293.
3132 '-- ----1

Fig. 1-9. Illustration of "at 1812"

write What is this fjgure?

The -write- statement causes the text contained in the tag to be
displayed on the student's screen. The writing starts at line 18, character
position 12, as specified by the preceding -at- statement.

draw 510;1510;1540;510

The -draw- statement specifies a straight-line figure to be displayed
on the screen. In this particular case a series of straight lines will be
drawn starting at location 510 (line 5, character position 10), going
vertically downward to location 1.510, then to the right to location 1540,
and finally back to the starting point, 510. This produces a right triangle
on the student's screen.

arrow 2015

INTRODUCTION

15

The TUTOR Language

The -arrow- statement acts as a boundary-line that separates preced-
ing display statements from the following response-handling statements.
Thus, what precedes the -arrow- command produces the screen display
which remains visible while the student works on the question. State-
ments after the -arrow- command are used in handling student responses
to the display. In addition, the -arrow- statement notifies TUTOR that a
student response is required at this point in the lesson. The tag of the
-arrow- statement locates the student response on the screen. An arrow-
head is shown on the screen at this place to indicate to the student that a
response is desired and to tell him or her where the response will appear.
In this case the arrowhead will appear on line 20, character position 15.
The student's typing will start at 2017, leaving a space between the
arrowhead and the student's first letter.

answer <it,is,a> (right,rt) triangle

wrong <it,is,a>square

The -answer- and -wrong- statements are used to evaluate the
student's response. The special brackets < and> enclose optional words,
while the parentheses enclose important words which are to be consid-
ered synonyms. Thus any of the following student responses would
match the -answer- statement: "a right triangle", "it is a rt triangle", "rt
triangle", etc.

H the response matches the tag of the -answer- statement, TUTOR
writes "ok" after the student's response. For a match to a -wrong-
statement, "no" is written. An "ok" judgment allows the student to
proceed to the next unit, whereas a "no" judgment requires the student to
erase and try again. Any response not foreseen by -answer- or -wrong-
statements is judged "no".

Having matched the student's response, TUTOR proceeds to execute
any display statements following the matched -answer- or -wrong-
statement. Thus, student responses of "a right triangle" and "square"
will trigger appropriate replies. In the absence of specific -at- statements,
TUTOR will display these replies three lines below the student's
response on the screen.

Special help is provided to the student if his answer is partially

16

INTRODUCTION

correct. Here is what happens if the student" responds with "a lovely
tringle, right?":

~ a lovely tringle, right?
xxxxxxxxtJ.c===",==, ¢:

TUTOR automatically marks up the student's response to give detailed
information on what is wrong with the response. The word "lovely" does
not belong here and is marked with xxxxxxx, the f:,. shows where a word is
missing, the word "tringle" is misspelled and is underlined, and the word
"right" is out of order, as is indicated by the small arrow.

Statements can be added to the current example unit which will
greatly improve it. Consider the following:

unit
at
write
draw
arrow

~specs
"--..foS' answe r

write
answer

Handling
additional
responses

draw
wrong
write

write
wrong
at
write

geometry
1812
What is this figure?
510; 1510; 1540;510
2015
okcap
<it,is,a> (right,rt) triangle
Exactly right!
<it,is,a> three*sided

(right,rt) polygon
Yes, or a right triangle.
<it,is,a> triangle
1605
Please be more specific.
It has a special angle.
1410;1412;1512
<it,is,a> square
Count the sides!

F'let!l:~e be more ~ecific.
It hae a special ,,:n~le.

Whet i~ thi~ fia:ure?

)- a trianale no

Fig. 1-10.
As you can see, any number of -answer- and -wrong- statements can

be added to the response-handling section of the unit. Time and effort
spent by an author in providing for student responses other than the
common answer can greatly increase the ability to carryon a personal
dialog with each student. Figure 1-10 shows what the student will see if
he responds with "a triangle". The <:'onstruction"three*sided" is called a
"phrase". A phrase is a set of words to be considered together for
purposes of spelling and word order. As another example, a question
about Columbus's flagship might involve the phrase "Santa*Maria".

17

The TUTOR Language

The -specs- statement is introduced here. It is used to give optional
specifications on how the student's response is to be handled. In this case
the tag, "okcap", specifies that any capitalization in the student's re-
sponse is optional. Without this specification, TUTOR would consider
"Right Triangle" to be misspelled. There are many convenient options
available in a -specs- statement. For example, "specs okextra,noorder"
specifies that extra words not mentioned explicitly in following -answer-
and -wrong- statements are all right, and that the student's word order
need not be the same as the word order of the -answer- and -wrong-
statements to achieve a match. Such options can be used to greatly
broaden the range of responses which can be handled properly.

Lessons could be written using only the commands already dis-
cussed. Explanatory units could be written using only display com-
mands. Tutorial units could be interspersed to test a student's under-
standing of the lesson material. Thus a single linear chain of units could
form a lesson. However, mastery of a few more TUTOR commands opens
up a wealth of "branching" or sequencing possibilities. Branching, the
technique of allowing alternate paths. through a lesson, is one of the keys
to personal dialog with each student. The example unit will, therefore, be
expanded to include -next-, -nextnow-, -back-, and -help- commands:

unit

1
next

[~ help
back
at
write
draw
arrow
specs
answer
write
wrong
at
write

geometry
moregeom
thelp1
intro
1812
What is this figure?
510;1510;1540;510
2015
okcap
<it,is,a> (right,rt) triangle
Exactly right!
<it,is,a> triangle
1605
Please be more specific.
It has a special angle.

draw 1410;1412;1512
wrong <it,is,a> square

~ nextnow treview

The tag of the -next- statement following the -unit- command gives

18

INTRODUCTION

the name of the next unit the student will see upon the successful
completion of unit "geometry". The -next- statement is necessary because
the next unit for a student in a highly-branching lesson sequence may not
be the unit following in the lesson. For example, a diagram of the lesson
flow involving unit "geometry" might be:

Partial Diagram of Lesson

BACK

geometry
Optional Branches

NEXT

end

unit moregeom

In moving from one unit to another the screen normally is automati-
cally erased to make room for the displays produced by the following
unit.

The -help- statement refers to a help unit which the student may
reach through the use of the HELP key. Help units are constructed in the
same manner as unit "geometry". However, the last (or only) unit in a
help sequence is terminated by an -end- command. Upon completing the
last help unit, the student is returned to the "base" unit, the unit from
which the student branched (in this case unit "geometry"). The student

19

The TUTOR Language

need not complete the entire help sequence. He may press BACK or
shift-BACK to return to the base unit from any point in the help
sequence. Help units for unit "geometry" could appear as follows:

* These units are help units for "geometry".
unit thelp1
at 1828
write The figure has three sides.
draw 510; 1510; 1540;510
*
unit
at
write
draw
*

thelp2
1828
It also has three angles.
510;1510;1540;510

unit
at
write
draw

~end

thelp3
1828
Note the right angle.
510; 1510; 1540;510

Any statement which begins with an asterisk (*) has no effect on the
operation of the lesson and may be used anywhere to insert comments
which describe the units. A comment statement between units improves
readability by guiding the eye to the unit subdivisions of the lesson.

The -back- statement permits the student to move to a different unit
by pressing the BACK key. Because of its name, it is customary to
associate a review sequence with the BACK key. If a student is in a
non-help unit that does not contain a -back- statement, the BACK key
does nothing. In a help-sequence unit that has no -back- statement, the
BACK key returns the student to the original base unit.

If the student calls the figure "a square", he or she will see this
response judged "no" and get the reply "Count the sides!" The
-nextnow- statement is used to force the student through additional
material. It locks the keyboard so that only the NEXT key has any effect.
In particular, the student cannot erase his or her response. When the
student presses NEXT, he or she will be sent to unit "treview". Upon

20

completion of one or more units of review about triangles, the author
might return the student to unit "geometry". Thus, this student's lesson
flow might consist of:

I) a discussion of geometric figures;
2) a question about a right triangle;
3) an error causing -nextnow- to lock the keyboard;
4) further study of triangles; and finally
5) a return to the right triangle.

Consider now the problem of using unit "geometry" for a second
student response. Additional display information is needed to ask the
student a second question, and another -arrow- command is needed plus
a second set of response-handling statements. The unit could appear as
follows:

unit
next
back
help
at
write
draw
arrow

}
f~endarrow
~ at

write

help
arrow

}

geometry
moregeom
intro
thelp1
1812
What is this figure?
510;1510;1540;510
2015

Response-handling statements
for first arrow.

2512
How many degrees in
a right angle?
angles
2815

Response-handling statements
for second arrow

The -endarrow- command delimits the response-handling statements
associated with the first -arrow-. Only when the first -arrow- is satisfied by
an "ok" judgment will TUTOR proceed past the -endarrow- command to
present the second question. The statement "help angles" overrides
the earlier statement "help thelpl". If the student presses the HELP

INTRODUCTION

21

The TUTOR Language

key while working on the second -arrow- he or she will reach unit
"angles" rather than unit "thelpl".

The second question could have been given in a separate unit rather
than following an -endarrow- command. The major difference is that the
entire screen is normally erased as the student proceeds to a new unit,
whereas here the second question was merely added to the existing screen
display. Even if there is only one -arrow- command in a unit, -endarrow-
can be useful, for it can be followed by display or other statements to be
performed only after the -arrow- is satisfied. This is particularly conve-
nient if there a're several -answer- commands corresponding to several
different classes of acceptable responses.

Fourteen TUTOR commands have been illustrated in this chapter.
This repertoire is adequate to begin lesson writing. If you have access to a
PLATO terminal, it would be useful at this point to tryout the ideas
discussed so far.

22

More on Creating
Displays

2

Particular attention should be paid to the question of how to display
text and line drawings to the student. Good or poor displays of material in
a lesson can make the difference between a successful or unsuccessful
lesson. Imaginative use of graphics, including animations (moving
displays), will capture the attention of the student and transmit your
message much more efficiently than would mere text. You have already
seen how to write text and draw figures by using the -at-, -write-, and
-draw- commands. This chapter will discuss how to achieve finer control
over screen positions, how to draw circles and circular arcs, how to
display large-size text and write at an angle, and how to erase portions of
the screen. The ability to erase a portion of the screen makes it possible to
create animated displays.

Coarse Grid and Fine Grid

It is convenient to specify a line number and character position for
displaying text. We have seen that the TUTOR statement "at 1812"
instructs PLATO to display information starting on the 18th line at the
12th character position. Line 1 is at the top of the screen and line 32 is at
the bottom. Each line has room for 64 characters, with character position
01 at the left and character position 64 at the right. This numbering
scheme is called the "coarse grid" or "gross grid".

23

The TUTOR Language

Sometimes it is necessary to position text or draw a figure with finer
control than is permitted by the coarse grid. The PLATO screen consists
of a grid of 512 by 512 dots, and the position of any of these quarter-
million dots can be specified by giving two numbers-the number of dots
from the left edge of the screen (often called "x") and the number of dots
up from the bottom of the screen (often called "y"):

518

y • 128

4111.

35.

38111

Fine-wrid
2111111

position

x • 384
IIfIll

5111

III 5111 1mm 15111 2111111 25111 33S 35111 4111111 45111 511111/

Fig. 2-1.

The position shown would be referred to as the "fine grid" location
"384,128" in an -at- or -draw- statement. This position is equivalent to the
coarse grid location 2449 (line 24, character position 49). As an example,
consider the following unit:

unit
at
write
at
write

double
384,128
DOUBLE WRITING
385,129
DOUBLE WRITING

This unit would write "DOUBLE WRITING" twice, displaced horizon-
tally and vertically by one dot, which looks like this:

24

Fig. 2-2.

MORE ON CREATING DISPLAYS

(Greatly enlarged.)

draw 1215;1225;120,240;1855

The -draw- command permits mixing the two numbering schemes:

This means "draw a straight line from 1215 to 1225, draw a second
straight line from there to (120,240), then draw a third straight line from
there to 1855". Note that each point, whether expressed in coarse grid or
flne grid, must be set off by a semicolon.

The -box-, -vector-, and -circle- Commands

_____ vec_to...,r ?
II"; 1.29 I

....,,,,,,,I~ I' -

I .t 2551
\ Circlet> 64,98,27'

\

Fig. 2-3.

Figure 2-3 illustrates how rectangular boxes are often drawn as part of a
display. Although such boxes can be drawn using the -draw- command, it
is even more convenient to use a -box- command, since you merely give
two corners of the box. For example:

25

The TUTOR Language

box 1215;1835

is exactly equivalent to:

draw 1215; 1235; 1835;1815; 1215

Fine grid coordinates can also be used for the corners of the box. The
sides of the box can be made thicker for additional emphasis. For
example, "box 1215;1835;2" will draw a box with sides two dots thick.

Another frequently drawn object is a "vector" -a line with an
arrowhead used to point out something on the screen. The statement
"vector 512;920" will draw a line from 512 to 920, with an arrowhead
added at the 920 end. Fine grid coordinates can be used. The size of the
arrowhead in relation to the line can be controlled by adding another
number. For example, "vector 512;120;6" will show an arrowhead
about half as large as normal. Making the arrowhead size negative draws
an "open" rather than a "closed" arrowhead.

Circles are drawn by specifying a center with an -at- command, then
using a -circle- command to specify the radius (as a number of dots):

at 1215
circle 50
circle 75

This will draw two circles whose radii are 50 dots and 75 dots long,
centered at screen location 1215. Notice that the screen position is
restored to the center of the circle after drawing a complete circle.

A portion or arc of a circle can be drawn by specifying starting and
ending angles, as in "circle 125,0,45", which will draw a 45-degree
circular are, starting at °degrees (O is "east" or "horizontally to the right";
and 360 degrees is again "east"). After drawing an are, the screen position
is left at the end of the arc rather than at the center of the circle.

The -circleb- command is just like -circle-, but it draws a broken or
dashed circle or circular arc.

The basic line-drawing commands (-draw-, -box-, -vector-, and
-circle-) are used together to build complicated drawings.

Large-size Writing: -size- and -rotate-

It is possible to display text in larger than normal size, and even write
at an angle. This is particularly useful in showing an eye-catching title on
a page. Here is a sample display with the corresponding TUTOR
statements. The "$$" permits a comment to appear after a tag.

26

Leeson on Verbs

Fig. 2-4.

MORE ON CREATING DISPLAYS

title
9.5
45
2519
Latin
oo
3125
Lesson on Verbs

unit
size
rotate
at
write
size
rotate
at
write

$$ text 9.5 times normal size
$$ text rotated 45 degrees

$$ return to normal writing

For technical reasons the large-size writing comes on the screen much
more slowly than does normal text, but the speed is adequate for short
titles. Use "size 0" to return to normal writing. Normal writing is
unaffected by -rotate-. However, you may use "size I" if you wish to
rotate standard size text. Size 1 writing appears at the same slow speed as
larger writing (about 6 characters per second, or 60 words per minute).
Only size 0 writing is rapid (180 characters per second, or 1800 words per
minute).

BE SURE TO RETURN TO SIZE 0!! If you forget to place a
"size 0" statement after the completion of the. special writing, all of
your text will be written slowly (and possibly rotated). It is also good
practice to say "rotate 0", so that the next time you use "size" the rotation
will be through 0 degrees unless stated otherwise.

You can magnify the width of the characters differently from the
height. For example, "size 2,5" will make the characters twice as wide
and five times as high as they are normally.

Because "sized" writing is slow, it should be used only for special
effects. It should be avoided on pages which are seen repeatedly, such as
a table of contents for a lesson, because the student will be irritated by the
enforced wait. In such cases, it is better to achieve emphasis by other,
faster techniques, such as drawing a box around a heading written in
"size 0".

27

The TUTOR Language

Animations (Moving Displays): -erase- and -pause-

An animated display can be created by repetitively displaying some
text, pausing, erasing the text and rewriting it in a new position on the
screen. Here is a unit which will show two balloons floating upwards.
The unit is split in order to show the changes in the display. (See Figures
2-5a through 2-5c.)

unit
at
write
at
write

~pause
~ at
~erase
~ at

write
pause

balloons
3020
Watch the balloons go up!
250,100
00
1.5
250,100
2 $$ erase two characters
250,150 $$ reposition 50 dots higher
00
1.5

00

Watch the balloons 80 up.

Fig. 2-5a.

28

$$ use 00 for balloons
$$ suspend processing for 1.5 seconds

00

Watch the balloons &0 up!

Fig. 2-5b.

MORE ON CREATING DISPLAYS

at
erase
at
write
pause

250,150
2
250,200
00
1.5

00

Woteh the bel100ns .0 vp!

Fig. 2-5c.

The statement "erase 2" selectively erases two character positions
without disturbing the rest of the screen. In particular, the text "Watch
the balloons go up!" will stay on the screen.

There are other forms of the -erase- command. The statement
"erase 12,3" will selectively erase a block of 12 character positions on
three consecutive coarse grid lines. The statement "erase" with no tag
will erase the entire screen instantaneously. The same full-screen erase
normally takes place automatically upon moving to a new main unit.

-pause-, -time-, and -catchup-

The -pause- statement with a tag in seconds suspends processing for
the specified amount of time. If the tag is omitted, TUTOR waits for the

29

The TUTOR Language

student to strike a key, any key, rather than wait a specified amount of
time. This form is particularly suitable in more complicated situations
where the student may want to study each step before proceeding. Here is
an example:

The:r-eare ~evera 1 kinds
of -eraoe- commands
for eelect i.ve and full
erao ina 0 f t he ~creen.

Fig. 2-6a.

Ther-e are 5«Ver.l k iMe
or -erase- oomnaT'lda
for seleet LV@and full
era.eina of the:lacreen.

·eraee 5· wi 11 eraze
5spa.cez. -erase 25,"-
wi 11 eraae 25 !Iop4lCe!J5

on .. 1 ines.

Fig. 2-6b.

30

unit
at
write

~pause
~ at

write

pause
at
write

discuss
520
There are several kinds
of -erase- commands
for selective and full
erasing of the screen.

1520
"erase 5" will erase
5 spaces. "erase 25,4"
will erase 25 spaces
on 4 lines.

2520
An -erase- command
with a blank tag
will erase the whole
screen.

MORE ON CREATING DISPLAYS

There e.r4!Zleveral kinds
of -er.=-e~ ';:0ff'IIl'\0a~

for ~lcctive and full
eraeina of t~, :lcreen.

~era~e S~ will eraae
5 ~a<:es. "erl!l5C 2S.1~
will era~e 2 s: =paces
on .. 1 il1e~.

An ~.raee~ eomrn.e.nd
with a blank tea
wi 11 era~~ the whole
scr~n.

Fig. 2-6c.

Each time the student presses a key to move past the -pause- command,
more text is added to the screen. This prevents the student from feeling
overwhelmed by too much text all at once. Each new paragraph is added
only when the student signals by pressing a key that he or she wants to go
on. On the other hand, this structure leaves the earlier paragraphs on the
screen so that the student can look back to review. If the -pause-
commands were replaced by -unit- commands, each paragraph would
reside in a separate main unit. When the student presses NEXT to move
onto the next main unit, the screen is completely erased to make room for
the next display. This would accomplish the objective of letting the
student control the rate of presentation of new material but would not
leave the earlier paragraphs on the screen for review and comparison.

It is inadvisable in this application to use "pause 15" rather than
"pause", since the student would have no control over the presentation
rate. Any time delay you choose will be too fast for some students and too
slow for others. A timed -pause- is mainly useful for animations.
Sometimes it is appropriate to move on after a long time if the student
hasn't pressed a key. This can bc achieved with a -time- command:

time 30
pause

31

The TUTOR Language

The "time 30" statement will "press the timeup key" after 30 seconds,
so that if the student does not press a key, TUTOR will. The student can
move on sooner by pressing a key before then. However, this is not
possible if you use "pause 30".

To summarize, there are three types of -pause- situations:

1) pause n paus13n seconds whether
keys are pressed or not

2) pause

3) time
pause

wait for any key

n } wait for any key or n seconds

Occasionally, you might want to send several seconds worth of
output to the student's screen, then pause two seconds, then add
something else. If you write several seconds of display including
text and drawings which take several seconds to paint on the screen,
followed by:

pause 2
write More text. ...

you will not get the desired effect because TUTOR will add "More
text ... " right after the initial material headed toward the terminal (since
the "pause 2" ends before the initial display is finished). The student
will see no gap between the first and second parts of the display. The
problem can be solved with a -catchup- command:

catchup
pause
write

2
More text. ...

The -catchup- command tells TUTOR to let the terminal "catch up" on
its work up to that point before continuing. Then you pause an additional
two seconds, and you get the desired effect.

32

The -mode- Command

MORE ON CREATING DISPLAYS

The -erase- command may be used to erase blocks of character
positions or the whole screen. However, something else is needed for
selectively erasing line drawings created with -draw- and -circle- state-
ments. The PLATO terminal can be placed in an erasure mode in which
the terminal interprets all display instructions as requests to erase rather
than to light up the corresponding screen dots. This is done with the
-mode- command:

unit
at
write
draw
pause

~mode
~ draw

mode
at
write

modes
2517
Selective erase of a figure
1210;2010;2050;1210 $$ triangle

$$ wait for a key
erase
1210;2010;2050
write
510
One line left.

$$ part of the triangle

Sel~ctive era-e.e (if a fiau,re

Fig. 2-7a.

Sele:.ctive e:r~~e of a figure:

Fig. 2-7b.

33

The TUTOR Language

The "write" mode is the normal display mode. Be sure to specify
"mode write" when you are through with "mode erase", or all further
writing in that unit will be invisible!

In the standard mode ("write") it is possible to superimpose or
overstrike text with another -write- statement. If, however, a "mode re-
write" statement is executed, the second -write- statement will erase the
previous text as it writes the new text, and there will be no superposition.
Compare these sequences in write and rewrite modes:

mode
at
write
at
write

write
1215
ABC
1215
abe

!write mode

MiC
(superimposed)

mode
at
write
at
write

rewrite
1215
ABC
1215
abe

1rewrite mode

abe
(not superimposed)

In the rewrite case the second -write- statement wipes out the 3-character
area as it writes the new information. Each character area is 8 dots wide
by 16 dots high. This determines the number of rows and columns in
coarse grid. In the coarse grid, (512/8)=64 characters fit across the screen,
and (512/16)=32 lines of characters fill the screen vertically.

The statement "erase 2" is actually equivalent to:

mode rewrite
write (two spaces)
mode (previous mode)

Writing spaces (blank characters) in rewrite mode wipes out an entire
character area.

The balloon animation in Figures 2-5a through 2-5c could have been
written:

at
write
pause
mode
at

34

250,100
00
1.5
erase
250,100

MORE ON CREATING DISPLAYS

write
mode

00
write

$$ instead of "erase 2"

This form would be different from the form using "erase 2" if there
were other screen dots lit in this area. The form which uses "erase 2"
completely erases two character positions while "write 00" in the erase
mode erases only the dots that make up the letters "00" without
disturbing neighboring dots.

Automated Display Generation

It should be mentioned that an author working at a PLATO terminal
can use a moving cursor to design a display involving text, line figures,
circles and arcs. The PLATO system then automatically creates corre-
sponding TUTOR statements which would produce that display. The
author can alter these statements, convert them back into a display, and
add to or alter the resulting display. This facility makes it unnecessary in
most cases to worry about the details of screen positions. Here is an
example of. such operations:

Fig. 2-8. Move the cursor (the "+") to
draw the road and to mark the ends of the
tree trunk.

Fig. 2-9. Draw the tree trunk.

35

The TUTOR Language

(16£1',112) '" 2521 DPAW mode

GROS~~ GRID (HELP)

Fig. 2-10. Specify a circle for the top ofthe
tree. Draw the house. Place text of various
kinds on the screen. (The car uses special
characters.)

36

unl t
dratl)

at
clr,::l-=:
dr'aw
at

dl~pl<3Y
1812; 1852;sk1Pi 1844; 1544
344,288

16

1837: 1637; 1535; 1633; 1833
1.04,225

~.,.rltoe ~
at 2J!J21

write Al.Jt,)m~ted dlspJay-makingl

size 3
r,:-tate -30
at 2521
L,AJrI te LO':,k I

Slze 0"
f,,:>t:.;l,te 0'

Fig. 2-11. PLATO automatically generates
TUTOR statements corresponding to the
desired display.

Automated display-makln~1

(272.296) • 1335 DRAW mod ..
FINE GRID (HELP)

Fig. 2-12. Recall the display and add a flag
to the house.

MORE ON CREATING DISPLAYS

unIt

draw
at
circle
draw
at
wr-lte

at
write
!fIIZe

f'¢t,§t'e
at
writ~

31ze
r'otate
draw

dl5play
1812; 1852;~kip; 18""'; 15.....
3"",288
I.
t837; 1637j 1535; 1633; 183':1

U'4.225
I;";,
2HZ1

Au:tomat~d di!!oplay-makina
3
-30
2521
Look I

•
o
1535; I 335 i 1333; :2 56. 296; 212 f 296

Fig. 2-13. PLATO appends a -draw-state-
ment corresponding to the flag.

37

The TUTOR Language

38

Fig. 2-14. Final result. The illustrations in this book were
created by these techniques. The screen displays were
photographed.

Building Your Own
Tools:
The-do-Command

3

You now know enough about presenting material to the student to be
able to make attractive displays. You will be able to do even more when
you learn how to tell PLATO to calculate complicated displays for you.
Before discussing how to do calculations we will pause to introduce an
extremely important concept, the "1;ubroutine", which is fundamental to
all aspects of authoring. We will start off by applying the concept of a
subroutine to certain display problems.

To introduce the use of subroutines, consider the problem of placing
some standard message on several of your main lesson pages. For
example, in the many units where you make help available to the student
(if he presses the HELP key) you might like to advertise this fact by
placing this display at the bottom of the page:

HELP is available

The corresponding TUTOR statements might be:

at 3123
write HELP is available
box 3022;3141

It would be tedious to copy these statements into every unit where they
were required. Moreover, if you decided later to move this to the upper
right corner of the screen, you would have to find all occurrences of this
and change all of them. There is a way around these difficulties, and in

39

The TUTOR Language

later work we will find further important advantages to the method.
Suppose we write a "subroutine" (a unit to be used many times as
needed):

unit
at
write
box

helper
3123
HELP is available
3022;3141

Where we need to show this message, we need only write the statement:

do helper

This statement attaches unit "helper" to the present unit. It is as though
we had inserted the contents of unit "helper" at the point where we say
"do helper". Now, instead of a dozen copies of the display statements we
have only one, plus a dozen -do- commands. The -do- command may
appear anywhere in a unit. The location of each -do- command will
determine when the associated display appears on the screen in relation
to your existing display material. All these displays may be changed by
simply changing the subroutine unit! You do not need to change the -do-
statements, instead change unit "helper" which they all use.

The use of -do- improves the readability of a TUTOR lesson. When
you see "do helper" anywhere in your lesson you recognize at a glance
what it is for. The contents of unit "helper" might contain a large number
of statements which would clutter up your other units, and decrease
readability, if these statements appeared directly in each unit.

Let's consider another use. Suppose we wish to draw a "Cheshire
cat" which fades to a smile as Alice watches. We want to draw a cat face
made up of the smile plus all the rest of the face, then erase everything
but the smile. Here is an effective way of doing it. (See Figures 3-1a and
3-1b.)

unit
at
write
do
catchup
pause
mode
do
mode
at
write

40

Alice
512
Watch the Cheshire cat!
cat

$$ wait for cat to be drawn
4 $$ then pause 4 seconds
erase
face
write
3012
See the smile?

BUILDING YOUR OWN TOOLS: THE·DO·COMMAND

Watch the Cheshire cat!

Fig. 3·1a.

We will need some units to use as the subroutines:

Wotch the' Che:~hire cat!

See the: emi Ie?

Fig. 3·1b.

unit cat
do face
do smile
*
unit face
at 250,250
circle 120 $$ outline
at 200,280
circle 30 $$ eye
at 300,280
circle 30 $$ eye
*
unit smile
at 250,250
circle 80,225,315 $$ smile-arc goes from 2250 to 3150

Note that unit "Alice" does unit "cat", which in turn does units "face"
and "smile". TUTOR permits you to go ten levels deep in -do-soHere we
have gone only two levels deep. Note that unit "smile", on its own, is a
useful subroutine and might be done whenever just the smile is desired.

41

The TUTOR Language

To summarize, we can build useful tools by constructing "subrou-
tines" (units which may be done from many places in the lesson). The
liberal use of -do- improves readability, reduces typing, and facilitates
revising the lesson. This last point is particularly important when there is
a "bug" (unknown error) in the lesson. Debugging becomes much
simpler because of the modular nature of subroutines, and because a
lesson which uses -do- extensively has its critical control points well
localized.

42

Doing Calculations
in TUTOR 4

You can make TUTOR calculate things for you. For example:

at
write

1201
Who is buried
in Grant's tomb?
1201 +308arrow

The -arrow- statement, as written, is completely equivalent to
"arrow 1509". Or consider this:

circle (412+72.62)'12

The radius of the circle will be taken to be the square root of the sum
of41 squared and 72.6 squared.

Just about any expression that would have made sense to your high
school algebra teacher will be understood and correctly evaluated. For
example:

43

The TUTOR Language

Expression
3.4+5(23-3)/2
2x3+.8
sin(30°)
491/2

(4+7)(3+6)
6/5x 10-3

TUTOR J;yaluatiQ.D
15.9
14 (NOT 22)
0.5 (See Appendix C for other functions.)
7
99
1200 (NOT 1.2x10-3)

If your high school algebra is rusty, we remind you that "2x5+3"
means "(2x5)+3" which is 13, not "2x(5+3)" which is 16. The rule is
that multiplication is "more important" than addition or subtraction and
gets done first. If you are unsure at some point, you may use parentheses
around several portions of your expression to make the meaning unam-
biguous.

A similar point holds true for division, which is considered "more
important" than addition or subtraction. "8+6/2" means "8+(6/2)"
which is 11, not "(8+6)/2" which would be 7. The only ticklish point is
whether multiplication is more or less "important" than division.
TUTOR agrees with most mathematical books and journals that multipli-
cation is more important than division, so that "6x4/3x2" means
"(6x4)/(3x2)" which is 4. Note that this means that TUTOR considers
"1/2(6+4)" to be "1/(2(6+4))" which is 0.05, not "(1/2)(6+4)" which
would be 5. Again, when in doubt use parentheses. You could write
".5(6+4)" if you wish, which is unambiguous.

Experience has shown that students tend to write algebraic responses
according to these rules, and making TUTOR conform to these rules
facilitates the correct judging of student algebraic and numerical re-
sponses.

Having seen how expressions are handled, we can introduce "stu-
dent variables" which may be used to hold numerical values obtained by
evaluating expressions. These stored results can be used later in the
lesson. As an example, a "variable" might hold the student's score on a
diagnostic quiz, and this score could be used later to determine how
much drill to give the student. The storage place is called a "variable"
because what it holds may vary at different times in the lesson. Another
variable might count the number of times the student has requested help,
in which case the number which it holds would vary from 0 to 1 to 2, etc.

There are 150 "student variables" which can be used for storing up
to 150 numerical values. These "student variables" are unimaginatively
called:

v1, v2, v3, ... v148, v149, v150.

44

DOING CALCULATIONS IN TUTOR

Later in this section we will learn how to give variables names (such
as "radius," "wrongs," "tries," "speed," etc.) which are appropriate to
their particular usage in a specific lesson. But first, we will look at
variables using their primitive names: vI through v150.

These variables are called student variables because each of the
many students who may simultaneously be studying your lesson has his
or her own private set of 150 variables. You might use variable v23 to
count the number of correct responses on a certain topic, which will be
different for each student. If there are forty students working on your
lesson, TUTOR is keeping track of forty different "v23's", each one
different. This is done automatically for you, so that you can write the
lesson with one individual student in mind, and v23 may be considered
simply as containing that individual student's count of correct responses.
Thus, one student might be sent to a remedial unit because the contents
of his variable number 23 show that he did poorly on this topic. Another
student might be pushed ahead because the contents of her variable 23
indicate an excellent grasp of the material. It is through manipulation of
the student variables that a lesson can be highly individualized for each
student.

Variables arc useful in building certain kinds of displays. Let's see
how to build a subroutine which can draw a half-circle in various sizes,
depending on variables which we set up. In order to specify the size of
the figure and its location on the screen, we must specify a center (xand y)
and a radius. We let variables vI and v2 hold the horizontal x and vertical
y positions of the center, and we let variable v3 hold the value for the
radius.

~ at x,v (at v1,v2)
circle radius,0,180 circle v3,0,180

draw x-radius,v;x+radius,v
(draw v1-v3, v2;v1+v3 ,v2)

t
(x,V)

(v1,v2)
(x+ radius,v)

(v1+v3 ,v2)
(x-radius,v)

(v1-v3 ,v2)

Fig. 4-1.

'We can draw such a figure with the following unit:

45

The TUTOR Language

unit
at
circle
draw

halfcirc
v1,v2
v3,0,180
v1--v3,v2;v1 +v3,v2

$$ 180 degree arc
$$ horizontal line

In order to use this subroutine we might write:

unit vary
calc v1¢-150
calc v2<:=300
calc v3¢-100
do halfcirc
calc v1<:=v1+v3
do halfcirc

$$ x center at 150
$$ y center at 300
$$ radius 100

$$ increment x center
$$ y and radius unchanged

The statement "calc v2<:=150"means "perform a calculation to put
the number 150 in variable v2". The statement "calc v1¢-v1+v3" means
"calculate the sum of the numbers presently held in variables v1 and v3,
and put the result in variahle vI". In the present case, this operation will
store the number 250 (150+100) in variable vI for use in thc second
"do halfcirc". Note that the second "do halfcirc" wilJ use the original
values of v2 and v3, which have not been changed. This unit wilJ produce
this picture:

46
Fig. 4-2.

DOING CALCULATIONS IN TUTOR

The <:::symbol is called the "assignment" symbol, because it assigns a
numerical value to the variable on its left. This numerical value is
obtained by evaluating the expression to the right of the assignment
symbol.

A slightly more complicated example of a -calc- statement is:

calc v3<:=5v2+v1

This statement means "multiply by 5 the number currently held in v2,
add this to the number held in vI, and store the result in v3." In
conversation you might read this as "calc v3 assigned five v2 plus vI" or
"calc v3 becomes five v2 plus vI". Notice that it is common practice to
refer simply to "v2" when we really mean "the number currently held in
variable v2".

The simplest possible -calc- statement merely assigns a number to a
variable, as in "calc v2<:=150".It is permissible to make more than one
assignment in a -calc- statement:

calc v3<:=v7<:=18.62

This will assign the value 18.62 to both variables v3 and v7.

Giving Names to Variables: -define-

Your programming can be made much more readable by "defining"
suitable names for the student variables which you use. For example, in
the units just discussed, the quantities of interest were the center (x and y)
and radius of the circular arc. We should precede such units with a
-define- statement:

~define

unit
calc

do
calc
do
*

x=v1,y=v2
radius=v3
vary
x<:=150
y<:::300
radius<:=100
halfcirc
x<:=x+radius
halfcirc

$$ names may be 7 characters long

$$ The command name -calc- may be
$$ omitted on successive lines

unit halfcirc
at x,y
circle radius,0,180
draw x-radius,y;x+radius,y

47

The TUTOR Language

The -define- statement tells TUTOR how to interpret the defined
names when they are encountered later in expressions. The units are now
much more readable than they were when we used vI, v2, and v3.

Giving meaningful names to the variables you use is very important.
After an absence of several months, you would have difficulty in
remembering what you are keeping in, say, variable v26, whereas the
name "tries" would remind you immediately that this variable holds a
count of the number of times the student has tried to answer the question.
The importance of readability is even more vital if a colleague is working
with you on the material. Your associate would find it extremely frustrat-
ing to try to figure out what you are keeping in v26. So, use -define-!

There should not be any v3's or v26's anywhere in your lesson except
in the -define- statement itself Put all your definitions at the very
beginning of the lesson where you will have ready reference to the
variables you are using.

The only reason we started out using the primitive v-names was to
establish a more concrete feeling for the meaning of a student variable.
From here on we will use defined variable names. A preceding -define-
statement is assumed.

WARNING: Normal algebraic notation permits expressions such as
"rcos6", but in TUTOR you must write "rXeos(6)" or "r(cos(6))". That is,
you must use an explicit multiplication sign between names (either your
defined names such as "r" or TUTOR-defined names such as "cos"), and
you must place parentheses around the arguments of functions. For
example, the "6" in cas (6) must be enclosed in parentheses.

The reason for this is that TUTOR cannot cope with the ambiguities of
trying to decide whether an expression such as "abc" means "axbc" (if
there is a name "be"), or "abxc" (if there is a name "ab"), etc. Later,
when we discuss the important topic of judging student responses, we
will see that TUTOR can make reasonable guesses when treating a
student's algebraic response and can permit the student the luxury of
leaving out multiplication signs and omitting parentheses around func-
tion arguments. You, the author, are required to be more explicit,
however, in separating one name from another. Notice that "I7angle" is
fine and TUTOR will recognize this as meaning "17 x angle". But
"rangle" can't be pulled apart into "(r)(angle)" because you might have
meant "(ran)(gle)".

48

DOING CALCULATIONS IN TUTOR

Repeated Operations: The Iterative -do-

With very little effort we can make a variety of designs out of our unit
"halfcirc". For example:

~do
~ at

write

unit
calc

stack
x<:=256
radius<:=70
halfcirc,y<:= 100,380,70
312
We used an
iterative -do-.

Fig. 4-3.

The effect of the -do- statement is to set y to 100 and do unit
"halfcirc", then set y to 170 (the starting value of 100 plus an increment
of 70) and do halfcirc again, and repeat the process until y reaches the
final value of 380. The format of the extremely useful iterative -do-
statement is:

do unitname,index<:=start,end,increment

In the above example, the index "y" starts at 100 and goes to 380 in
increments of 70. If no increment is specified, an increment of one is
assumed. For example, "do halfcirc, radius<:=101,105"will make an arc
fivedots wide, as in the following figure:

Fig. 4-4.

49

The TUTOR Language

The iterative -do- statement also helps in making animations. The
following statements will cause the half-circle to move horizontally
across the screen. (See Figures 4-5a and 4-5b.)

unit march
at 3120
write Move figure left to right.
calc y<:=280

radius<:=75
do anim,x<:=100,350,50
do halfcirc $$ draw final figure
at 3220
write All done.
*
unit
do
catchup
pause
mode
do
mode

anim
halfcirc

1
erase
halfcirc
write

Move fltl\J.re left to riaht.

Fig. 4-5a.

50

$$ draw figure
$$ wait for it to finish
$$ pause an additional second

$$ erase the figure

Fig. 4-5b.

DOING CALCULATIONS IN TUTOR

We simply -do- unit "anim" repeatedly for different values of x (the
horizontal position of the figure on the screen). Unit "anim" does unit
"halfcire" twice, once to draw and once to erase the figure interrupted by
a one-second pause. The -catchup- command insures that a second will
elapse from the end of drawing the figure on the screen until the
beginning of erasing it.

Now that you have studied -definc-, -calc-, and -do-, you have learned
the basic techniques of how to tell PLATO what calculations you want
performed. We have applied these tools to a variety of display generation
problems, and we will later use calculations for controlling sequencing in
a lesson and for judging responses. Hopefully, you have gained added
insight into the value of a subroutine. Notice how many different ways
we have used the single unit "halfcirc"!

Showing the Value of a Variable

We have learned how to calculate and how to store results in
variables. How do we show these results on the screen? Suppose we
perform this calculation:

calc y¢::5sqrt(37) $$ or, y¢::5x 37% ; "sqrt" means square root

How do we later show the value of y? Assume we have defined y. Perhaps
we could use this:

write y

No, that won't work; that will just put the letter "y" on the screen. The
-write- command is basically a devicc for displaying non-varying text, not
i'or showing the value contained in a variable. We need another com-
mand:

show y

This will show the value of y in an appropriate format (-show- picks
an appropriate number of significant figures and will use a scientific
format such as 6.7x 1013, if the number is large enough to require it). By
using -show- instead of -write-, you tell TUTOR that you want the stored
value to be shown rather than just the characters in the tag.

51

The TUTOR Language

The -show- command will normally choose 4 significant figures, so
that a typical display might be "- 23.4 7". You can specify a different
value by giving a second "argument" (arguments are the individual
pieces of the tag of a statement):

show y,a $$ a significant figures

The arguments of the -show- command can, of course, be complicat-
ed expressions:

show 10+30cos(2angle),format+2

In fact, it is a general rule that you can use complicated expres-
sions anywhere in TUTOR statements. For example, "draw 5rad
+225,34L; 123 -L2,28L"!

Here is a short program which uses -show- to display a table (see
Figure 4-6) of square roots of the integers from 1 to 15:

define
unit
at
write
at
write
do
*
unit
at
show
at
show

52

N==v1
roots
310
N
325
N%
root,N<:=1,15

root
410+100N
N
425+100N
sqrt(N)

$$ write titles for the two columns

N

1
2
3
4
5
6
7
8
9
18
11
12
13
14
15

1
1.414
1.732
2
2.236
2.449
2.646
2.828
3
3. 162
3.317
3.464
3.686
3.742
3.873

Fig. 4-6.

DOING CALCULATIONS IN TUTOR

The last statement could also be written as "show N Y2". This
technique of making tables, including the use of the -do- index (N) to
position the displays (as in "at 425+ 100N") is an important and
powerful tool.

There are other commands for displaying variables: -showe- (expo-
nential), -showt- (tabular), -showa- (alphanumeric), -showo- (octal), and
-showz- (show trailing zeroes). These are described in detail in the
reference material mentioned in Appendix A.

Although -write- is basically designed for non-variable text, combi-
nations of text and variables occur so often that TUTOR makes it easy to
"embed" a -show- command within a -write-:

write The area was <t's,13.7w,6»square miles.

The embedded "s" indicates a -show- command and the remainder
"13.7w,6" is its tag. Other permissible abbreviations include "0"

(showo), "a" (showa), "e" (showe), "t" (showt) and "z" (showz). The
above -write- statement is equivalent to:

write The area was
show 13.7w,6
write square miles.

Passing Arguments to Subroutines

When you write "show L'3.7w,6", you are passing two pieces of
information to the -show- command. You are giving two numerical
"arguments" (13.7w and 6) to the TUTOR machinery that performs the
-show- operations. Similarly, we created a half-circular arc with
"circle radius,0,180" in which we passed three arguments to the
TUTOR circle-making machinery. Sometimes certain arguments are
optional. For example, "show 13.7w" will use a default second argu-
ment of 4 (significant figures), and omitting the last two arguments in a
-circIe- command ("circle radius") will cause a full circle to be drawn
rather than an arc. When we pass one argument to the -at- command
("at 1215"), we mean coarse grid; when we pass two arguments
("at 125,375"), we mean fine grid.

This notion of passing arguments to TUTOR commands, with some
arguments optional, also applies to your own subroutines, such as unit
"halfcirc". The "halfcirc" subroutine needs three arguments (x, y, and
radius) to do its job. We passed these arguments by assigning values to
variables and letting "halfcirc" pick up those values and use them:

53

The TUTOR Language

define
unit
calc

do
calc
do
*
unit
at
circle
draw

x=v1,y=v2,radius=v3
vary
x¢=150
y¢'300
radius¢=100
halfcirc
radius¢:50
halfcirc

halfcirc
x,y
radius,0,180
x-radius,y;x+radius,y

Notice that the second -do- will use the original "x" and "y", since these
variables have not been changed. It is as though we passed only one
argument ("radius") to the subroutine.

TUTOR permits another way of writing this scquence which looks
similar to the way onc passes arguments to the "built-in subroutines"
(-show-, -circle-, -at-, etc.):

define
unit

~~~
*
unit
at
circle
draw

x=v1,y=v2,radius=v3
vary
halfcirc(150,300,100)
halfcirc(50)

halfcirc(x,y,radius)
x,y
radius,0,180
x --rad ius,y; x +rad ius,y

The statement "unit halfcirc(x,y,radius)" tells TUTOR that when this
unit is done as a subroutine, arguments are to be passed to it. The
statement "do halfcirc(150,300,100)" tells TUTOR to pass the listed
arguments to the "halfcirc" subroutine for its use. The arguments are
passed in the order listed:

do ha'fC""7fjt (Pass3Argumentsl
unit halfcirc(x,y,radius)

54



DOING CALCULATIONS IN TUTOR

These variables are now set for use in the subroutine. It is precisely as
though we had assigned values to "x", "y", and "radius" by using -calc-.
If some arguments are omitted, these variables are not transferred:

do ha'fCirCT5"ar
2

(Pass 2 Argumentsl

unit halfcirc(x,y,radius)

In this case the variable "y" has not been assigned a new value, so it
retains the value it had, which was 300. (The value of "y" could have
changed if "halfcirc" itself altered it. For example, if we append
"calc y¢=75" to the end of unit "halfcirc", "y" would now be 75,
although it was originally passed the value of 300 by the first -do-
statement during the making of the first display.)

Arguments to be passed need not be simple numbers. Each argument
can be a complicated expression. The expressions are evaluated, then
passed in order:

do halfCirC(7diUS - 25,r;diUS+25v,200+vl

ha/fcirc(x,y,radius)unit

It is as though we had written:

calc arg1¢=3.4radius-25
arg2¢=radius+25y
arg3¢=200+y
x¢=arg1
y¢=arg2
radius¢=arg3

Just as the -at- command handles its arguments differently depend-
ing on the number of arguments (one for coarse grid and two for fine
grid), so it is possible for your subroutines to do such things. There is a
TUTOR-defined "system variable" named "args" which always contains
the number of arguments passed the last time a subroutine was done. By
"system variable" we mean a variable separate from the student variables

55



The TUTOR Language

(v1 through v150) whose contents are assigned by TUTOR rather than by
you. You do not define system variables; they are already defined for you.
(Indeed, if you say "define args=v3", you will override TUTOR's
definition of the meaning of "args", so that "args" will mean "v3" rather
than "the number of arguments passed to a subroutine".) In Chapter 6
(Conditional Commands) you will see how you could do a variety of
things in a subroutine (conditional on the value of "args") which are
similar to the kinds of things the -at- command does.

Our subroutine "halfcirc" uses three student variables: vI, v2, and
v3, defined as "x", "y", and "radius". Another subroutine could use the
same variables for carrying out its work, but it must be kept in mind that
-do-ing this subroutine will affect vI, v2, and v3, since arguments will be
passed.

Suppose one subroutine uses another, with "nested" -do-s like this:

do A(5)

1 PASS

unit A(v11) $$ v11<:=5
do B(3+v11)
calc v11<:=10v11 $$ v11¢50

PASS

unit B(v25) $$ v25<:=8

Variable v11 ends up with the value 50. It is advisable to use different
variables in the two subroutines. Here unit A uses v11 and unit Buses
v25. It can lead to confusion or even logical errors if B also uses v11 to do
its work, since -do-ing B will affect the value of vII used by A.Here is the
structure to be avoided:

do A(5)

1 PASS

unit A(v11) $$ v11<:=5

56



DOING CALCULATIONS IN TUTOR

do
calc $$ v11<:=80

PASS

unit B(v11) $$ v11<:=8

Now variable v11 ends up with the value 80 rather than 50. This is due to
the effect on vll of the "do B(3+vll)" statement, which assigns thc
value of 8 to v11 by passing the argument to unit "B".

This concludes our discussion of calculations for now. We can
calculate, save results, use them to make displays, and show the values.
In the next section, we will use calculations in association with guiding
the sequencing of a lesson.

57



Joe
58



Sequencing of Units
Within a Lesson

5

We have discussed many units which make different kinds of
displays. In some cases, the main units had other units attached to them
by means of -do-. Upon completion of a main unit, the student can
proceed to the next one by pressing NEXT. A greater variety of inter-unit
connections is needed to build a complete lesson which includes optional
help sequences, branches to remedial sections when the student is having
trouble, an index that gives the student some control over the order of
presentation, etc. This section will discuss, in more detail, how to build
rich interconnections into a lesson. This discussion builds on the
introduction to such matters presented in Chapter 1.

It is often desirable to skip over some units, particularly if they are
used as subroutines, not as main presentation units. We have seen that
this can be done by using a -next- command to name the main unit which
is to follow. For example:

unit
r:::.s=next
~ do

at
write
*

one
two
dispone
1515
This is unit one.

unit
calc

dispone
rad ius¢:(x¢:y¢:200)-50

(Continued on the next page.)

59



The TUTOR Language

do halfcirc
*
unit two
at 412
write This is unit two.

Fig. 5-1a.

TM. i. unit two.

Fig.5-1b.

When TUTOR begins "executing" the statements in unit "one", it starts
out assuming that the next physical unit, unit "dispone", will be the next
main unit. However, TUTOR encounters a "next two" statement which
says, "No, make a note that unit 'two' will be next, rather than the next
physical unit". The "do dispone" is then executed, which involves
drawing a figure. Finally, we write "This is unit one", which is at the end
of unit "one". Nothing more will happen until the student presses the
NEXT key, at which time TUTOR looks at its notes and finds that unit
"two" comes next, whereupon it erases the screen and starts executing
unit "two". Had we not inserted the -next- command, TUTOR would
have gone on to unit "dispone" by default.

To put it another way, TUTOR has a pointer which tells which main
unit should come next. At the beginning of a main unit, TUTOR places
zero in this pointer to indicate that the next physical unit should be next.

60



SEQUENCING OF UNITS WITHIN A LESSON

If no -next- command is encountered, we reach the end of the unit with
the pointer still zero, and when the student presses NEXT, TUTOR will
by default proceed to the next physical unit. On the other hand, if we
encounter a -next- command anywhere in the unit, it will alter this
pointer so that later, when the student presses NEXT, the pointer is
non-zero and is pointing to whatever unit we have specified.

It should be clear from this discussion that the -next- command can
be executed anywhere in the unit without changing its effect. Neverthe-
less, it is important to place the -next- command near the beginning of the
unit. The advantage is that you can then see at a glance what is the main
sequence flow. If the -next- command is buried far down in the unit, you
have to hunt for this crucial information. You put such unit information
at the beginning of a unit for the same reason that you define appropriate
names for the variables you use: you or a colleague may have to read
through the lesson months after it was written!

The following is a simple illustration of how the -next- pointer is
handled:

unit silly
next A
next B
next C
*
unit sillier

Well, what unit will be next? Answer: unit "C"! The pointer starts out
cleared to zero (which implies the next physical unit), then gets set to
"A", then to "B", and finally to "C". Each succeeding -next- command
overwrites what had previously been in the pointer.

It is also possible to clear the next pointer yourself by -next- with no
tag or "next q" ("q" for" quit specifying something"). Either of these
forms will clear the next pointer so that the next physical unit will come
next. In other words, the sequence:

unit
next
next
*

start
silly
q $$ or just "next" with no tag

unit again

will proceed from unit "start" to unit "again" because the "next q"
cancels the "next silly".

61



The TUTOR language

Such seemingly meaningless manipulations are mentioned here for
completeness and as aids to explaining how TUTOR handles a unit
pointer, such as that associated with the -next- command. These manipu-
lations will make more sense to you later on in the book. The important
thing to remem bel' is that you have complete control over the pointer. You
can set it or clear it with an appropriate -next- command.

The existence of "next q" (and related statements) means that
"unit q" is not a permitted statement (you are not allowed to name a
unit "q" because of the possible confusion). For similar reasons you will
see later that a unit cannot be named "x".

Another way to utilize pointers is in specifying optional "help"
sequences which the student can request by pressing the HELP key.
Such optional sequences are important tools in tailoring the lesson to
meet the needs of individual students of diverse backgrounds and
abilities. Here is an example. (See Figures 5-2a and 5-2b.)

unit
r-.::::~help
"-.J.S at

write
*
unit

~help
~ at

write

unit
at
write

*
unit
at
write

end

62

dipper
words $$ specify a help unit
1215
Today we will discuss Ursa Major.

dippy
words$$ specify a help unit
2213
Ursa Major is in the northern sky.

words
1525
Ursa Major is the Latin name for the
constellation which contains
the "Big Dipper".
(Press NEXTfor more help,
or Press BACK.)

words.2
1525
"Ursa" means "bear".
"Major" means "bigger".



SEQUENCING OF UNITS WITHIN A LESSON

NEXT or BflCK

HELP (ba:5e is "dipper")

_ _~.~. _ ..~.

umt dlpper ~__,~~

NEXT ~~1~~~
[--.:J .[z,::J

unit dIppy . .~-~=-r-._. NFXT or BACK

NEXT ~

IIELP (06,,,,= is "dippy")

dipper

NE><T

Fig. 5-2a. Fig. 5-2b.

The -help- command is used to specify a "help" unit, which may be
just the first unit in a long help sequence. If you provide help in this way,
the student can get it by pressing the HELP key. (Conversely, if there is
no -help- command, the HELP key has no effect). When the student
enters the help sequence, his or her screen is erased to clear the way for
the display generated by the first help unit. The student may at any time
press BACK or shift-BACK to return to "home base", the main unit he or
she was in when requesting help. A "base" pointer retains the name of
the "base unit" (the unit to return to). In the example, if you press HELP
in the base unit "dippy", TUTOR remembers "dippy" and jumps to
"words", from which the BACK key will take you back to "dippy". If
instead you press NEXT, you advance to "words2", where you can again
press BACK or shift-BACK to return to "dippy". From "words2" you will
also return to "dippy" upon pressing NEXT because the -end- command
in unit "words2" signals the end of the help sequence.

It is almost as though the student had two screens to look at! The
student starts the lesson in the first unit ~f a normal, non-help sequence
and advances in this sequence until he or she requests help. At this point,
the student turns his or her attention to a different, parallel sequence of
units, almost as though that student had turned to use another terminal.
The student can get back to the original sequence by pressing BACK, as if
he or she had turned back to the original terminal. The usefulness of such
a parallel sequence is not limited to help sequences but can be used to

63



The TUTOR Language

provide review, a desk calculator mode, a dictionary of terms, tables of
data, etc., or for any situation in which the student temporarily needs a
second terminal "off to the side".

It is possible to access yet another help sequence when you are
already in a help sequence. BACK, however, will return you to the
original base unit, not the help unit you were in when you requested the
second help sequence. This is due to the fact that there is only one base
pointer, which is not changed by the second help request. If there is
already a base unit specification, TUTOR does not alter it.

You can alter tbe base unit pointer yourself with a -base- command.
If you put a -base- command with no tag in unit "words" you will prevent
a return to "dipper" or "dippy". The -base- command with no tag or a
"base q" statement clears the base pointer so that TUTOR forgets where
to return to and thinks that you are not in a help sequence. (You should
notice that the -end- command in unit "words2" is now ignored. The
-end- command has no effect in a non-help sequence.) This -base- (blank
or "q" tag) is used quite often since it is frequently convenient to put the
student into a non-help sequence, even though he reached a certain point
by pressing HELP. Also, TUTOR automatically clears the base pointer
whenever and by whatever means the student reaches the corresponding
base unit.

You can change the base pointer to point to some unit other than the
original one. Imagine that we place the following statement in unit
"words":

base dispone

This means TUTOR will eventually return to "dispone" rather than
"dipper" or "dippy". This is occasionally a useful technique. For
example, you might like to return to a unit just ahead of the original one
in order to ease back into the original context. Notice, too, that while
-base- with no tag (or" q") can change a help sequence into a non-help
sequence, so "base unitname" can change a non-help sequence into a
help sequence by naming a unit to return to.

You probably will not need all of the features of -help-, -base-, and
-end- described above, but hopefully the discussion has clarified how
they do their work. You have also discovered some terms which will be
quite useful in later discussions and can now talk about "non-help
sequences" of "main units" and "help sequences" of "main units". It
should be pointed out that a base unit may have other (auxiliary) units
attached to it by -do-; and, of course, you return to the base unit itself, not
to one of these attached units, even if the -help- command is located in an
attached unit. Moreover, a lesson may be thought of as a collection of

64



SEOUENCING OF UNITS WITHIN A LESSON

main units which have attached units, and the student moves from one
main unit to another. The student may enter a help sequence of main
units, each of which may -do- attached units. While the student is in the
help sequence, TUTOR remembers which main unit is the "base" unit to
return to when -end- is encountered, or when BACK or shift-BACK is
pressed. The following is a diagram of this structure:

HELF' ~~- ma l-~-~}JNE><"L....-_.
(optlonaJ;--"l -::l

~["Coc,",' I
NEXT

START

l~
\

\f'lEXT

\
\ .Q-t;;:;};=--"-'~/.~~

~J
I at;dled }~

_-L"
[attached_J

Return to
ba,se uni t

Fig. 5-3.

You may have realized that -help- and -base- are quite similar to
-next- in that all three commands set pointers. (The pointers have
different uses, however). For example, if we say:

unit
help
help
help c

lotshelp
a
b

then the last one wins-the help pointer ends up pointing at unit "e". We
saw earlier that -next- works this way. Similarly, "help q" or -help- with
no tag will clear the help pointer, thus making the HELP key inoperative.

65



The TUTOR Language

You may find it helpful to think of a help sequence as a "slow"
subroutine. Whereas a -do- command takes us to a unit and right back
again, -help- makes possible an optional jump to a unit or to a sequence of
units wherc the student may study for many minutes before returning to
the base unit. Aside from the "slowness" and the necessity of pressing
keys to go and return, there is one fundamental difference from a -do-
situation. In a help sequence, we return from help to the beginning of the
base unit and re-execute the statements in the unit in order to restore the
original display, whereas the return from a -do- is to the statement
following the -do-.

This last point is sufficiently important to warrant an example:

unit
at
write
calc
*
unit
help
at
write
*
unit
at
write
end

initial
2513
Set "a" to 0.
a¢:0

repeat
trivial
2715
Increment "a" to <1,5,a¢:a+1».

trivial
312
Press NEXT or BACK.

(Of course, "a" must be defined.) If we repeatedly press HELP, then
BACK, while we are in unit "repeat" we will repeatedly increment
variable "a". Variable "a" increases by one on every return from the help
sequence because the return is to the beginning of the base unit, and all
the statements in unit "repeat" are re-executed. This is necessary to
restore (to the screen) the display associated with unit "repeat", since the
entire screen is erased when the HELP and BACK keys are pressed.

This example brings up a fundamental programming point: the
question of initialization. We might use a structure like that shown above
for counting the number of times the student presses the HELP key
(although we would then most likely put the "a¢:a+ 1" in the help unit).
In order to count something (requests for help, number of wrong
answers, etc.), it is necessary to "initialize" the counting variable to zero
before starting the process, and this initialization must precede (and be
outside) the process itself. This can perhaps best be seen by moving the
statement "calc a¢:0" from unit "initial" to the beginning of unit
"repeat" :

66



SEQUENCING OF UNITS WITHIN A LESSON

unit
help
calc
at
write

repeat
trivial
a¢:0
2715
Increment "a" to <{s,a¢:a+1».

Imagine pressing HELP (and BACK) repeatedly. There would never be a
change in the displayed value of "a", because on each return from the
help unit, "a" is again reset to zero (whereas that was previously done
only within unit "initial").

The question of initialization will be encountered again and again in
various guises. These matters were not mentioned earlier partly because
the iterative -do- command had the initialization built-in. For example:

do zonk,i¢:5,13

means "initialize 'j' to 5 and do 'zonk', then repeat by incrementing 'j' by
one until it reaches 13".

It should be mentioned here that initialization questions are, of
course, not unique to programming. The principal and interest due
monthly on your car or house loan depend on the initial conditions of the
loan. When you make fudge, you start with certain ingredients in the
mixing bowl (the initial condition) and then you beat the mixture 200
times. You would no more restart with new, unmixed ingredients after
each beating stroke than you would reinitialize a count of student errors
after each attempt. In other words, questions of initialization are mainly
questions of common sense, and we will make explicit comments about
these matters only where confusion is likely. In the case of a return from a
help sequence, you might have thought that TUTOR remembers the
entire display originally made by the base unit. However, as you have
seen, TUTOR must re-create the display by re-executing the commands
in the base unit (which has side effects related to initialization questions).

Now, let's move the "calc a¢:0" back to unit "initial" and modify
the unit to look like this:

unit
calc
jump
*

initial
a¢:0
repeat $$ do not wait for the NEXT key

67



The TUTOR Language

The -jump- command acts much like the student pressing NEXT (the
screen is erased and we move to a new main unit). The -jump- command
is particularly useful in association with initializations, as in this exam-
ple, where it is necessary to separate initializations from a process in a
different unit. It would be superfluous to show the student a blank screen
and to make the student press NEXT. Indeed, it should be a basic rule to
minimize unnecessary keypresses so as not to frustrate the student.
Notice that -jump- is immediate (like -do- and unlike the -next- or -help-
commands) and that statements which follow -jump- in a unit will not be
executed (unlike -do-, -next-, and -help-).

The base pointer is not affected by a -jump-. The pointer remains zero
if we are not in a help sequence, and it retains its base unit specification if
we are in a help sequence. The -jump- simply takes us from one new main
unit to another without having to press NEXT. Since it starts a new main
unit, a -jump- cancels any -do-s which have been encountered (there will
be no return from those -do-s).

When moving from one main unit to another, by -jump- or by
pressing NEXT, the entire screen is erased unless the first of these two
main units contains an "inhibit erase" statement. For example, the
sequence:

inhibit
jump

erase
more

will leave the old display on the screen, and displays created by unit
"more" will be added to the screen.

Since -jump- takes the student from one main unit to another without
altering the base pointer, it is possible to take a student to a help sequence
immediately without pressing HELP:

unit model

base model
jump modhelp

68

Initially, the base pointer is zero because we are in a non-help sequence.
Then, a -base- command is used to set the base pointer to unit "model"
(the· main unit we are presently in). The -jump- takes us to unit
"modhelp" .



SEQUENCING OF UNITS WITHIN A LESSON

Now we are in a help sequence because the base pointer has been set.
The return from the help sequence will be to the beginning of unit
"model". Note the difference between "base model" and "base q" in
unit "model": a "base q" statement would clear the already-cleared
base pointer, whereas "base model" sets the pointer to "model",

Summary of Sequencing Commands

You have learned a variety of commands which enable you to control
the sequencing of units in a lesson. These include commands which set
pointers (-next-, -help-, -base-, etc.) and a couple of immediate branching
commands (-do- and -jump-). You have seen how to have two parallel
sequences of main units, a non-heIp sequence and a help sequence, and
have used the -end- command to terminate a help sequence. Additional
aspects of the connections among units will be discussed in Chapter 6 in
the section on the -goto- command. Recall that the LAB, DATA, and
BACKkeys are activated by -lab-, -data-, and -back- commands, just as the
HELP key is activated by the -help- command. The shifted HELP, LAB,
DATA, NEXT, and BACK keys (abbreviated as HELPl, LABl, DATAl,
NEXTl, and BACKl) are activated by the commands -helpl-, -labl-,
-datal-, -nextl-, and -backl-. (When in a help sequence, the BACK or
BACKl keys will cause a return to the base unit, unless there are explicit
-back- or -backl- commands to alter this.) Here is a unit which uses many
of these commands:

unit
help
help1
lab
lab1
data
data1
at
write

central
uhelp
index
simulate
calc
data
news
1314
Press HELPfor assistance,

shift-HELP for an index,
LAB for simulation,
shift-LAB for a calculator,
DATA for tables of data,
shift-DATA for class news.

This is an extreme case, but this unit gives the student six choices of help
sequences, and which help sequence is entered depends on which key
the student presses. In any of these cases, the eventual return will be to
this base unit. 69



The TUTOR Language

The commands -next-, -nextl-, -back-, and -backl- are somewhat
different in that they do not cause a help sequence to be initiated
(pressing the corresponding key does not alter the base pointer, and one
simply moves among main units of the help sequence or non-help
sequence).

The same conventions apply to all these commands. In particular, a
blank tag (or "q") disables the corresponding key by clearing the
associated pointer. A non-help sequence can be changed into a help
sequence by specifying a unit to return to with a "base unit" statement. A
help sequence becomes a non-help sequence if we encounter a "base q"
or "base" statement, since these clear the base pointer.

It is important to point out that all the unit pointers, other than
"base", are cleared when we start a new main unit (either by -jump- or by
pressing a key such as NEXT, BACK, or HELP). Starting a new main
unit, therefore, involves a number of important initializations, including
erasing the screen to prepare for the new display (unless there was a
preceding "inhibit erase").

Notice that -jump- and -do- are basically author-controlled branching
commands, while -help-, -back-, -data-, etc., permit the student to control
the lesson sequence.

There is another way to enter a help sequence, which is particularly
useful in offering the student an index to the various parts of the lesson.
Suppose the lesson is organized into chapters or topics and you wish to
let the student choose his or her own sequence. In particular, the student
can skip ahead, go back, or review material. It is desirable that the student
be able to go to an index or table of contents at any time. One way to
provide access to the index is to put a "data table" statement in every
main unit. The student can then hit the DATA key and jump to unit
"table" at any time. Unit "table" would contain a list of topics for the
student to choose from, and it should contain a "base" statement to insure
that the chosen topic be entered as a base sequence. Another way to
provide access to this kind of index is by means of a single -term-
command:

unit
base

~term
~ at

write

table

index
1218
Choose a chapter:
a) Introduction
b) Nouns
c) Pronouns
d) Verbs

70



SEQUENCING OF UNITS WITHIN A LESSON

arrow
answer
jump
answer
jump
answer
jump
answer
jump

1822
a
intro
b
unoun
c
pron
d
verb

The presence of "term index" in the unit "table" makes it possible for
the student to press the TERM key and type "index" in order to reach
unit "table" at any time. (The TERM key is the shifted ANS key on the
keyboard.) When the student presses TERM, TUTOR responds by asking
the student "what term?" at the bottom of the screen, whereupon the
student would type "index". The student then reaches unit "table",
where he or she may choose a chapter. You can see that -term- is
complementary to -help-. The -help- command in a main unit specifies
where to go if HELP is pressed while in that main unit, whereas the
presence of -term- in a unit specifies that the unit can be entered from
anywhere in the lesson. An error is made if another -term- command (with
the same tag) is placed in a different unit. In this case, TUTOR would not
know which unit to enter.

While the -base- command can be put at the beginning of the unit,
there is some advantage to moving it later on in the unit. With -base-
commands just before the -jtlmp- commands, the student retains the
option of pressing BACK to return to where he or she came from (if he or
she doesn't like the available choices). This option is lost if the -base-
command has already cleared the base pointer.

The name -term- stems from an early use of this kind of facility to
provide a dictionary of "terms", whereby the student has access to the
special vocabulary used in a lesson. In such an application, there are as
many help units as there are terms to be defined and each unit has an
appropriate -term- command:

unit
term
at
write
end

cardinfo
cardiac
1907
"cardiac" means "pertaining to the heart".

When the student types TERM-cardiac, the screen is erased and the
definition of "cardiac" is displayed by unit "cardinfo". Immediately

71



The TUTOR Language

upon pressing NEXT or BACK,the screen is again erased and the student
is sent back to the beginning of the base unit. A better procedure in this
case would be to change the statement "term cardiac" to "termop
cardiac". The -termop- command refers to "term on page" and permits
the display given by unit "cardinfo" to be added to the original display
without any erasing.

Except for such dictionary apP.1ications, it is strongly recommended
that you limit yourself to having only one unit with a -term- in it, and its
tag should be "index". This greatly simplifies the instructions to the
student on how to use the lesson and minimizes what he must remember
in order to move around in the lesson. In the index unit you describe the
various options that are available. Even for providing a dictionary of
terms, this scheme is probably preferable (one of the options could be
"dictionary of terms", which in turn would show a list of the words
whose definitions are available).

It is possible to have additional -term- commands in the unit to
provide synonyms:

unit
base
term
term
term
at
write

table

index
contents
choice
1218
Choose a topic ...

These additions insure that the student will reach this unit by TERM-
index, or TERM-contents, or TERM-choice.

The -helpop- Command: "Help on Page"

72

Often the help to be provided when the student presses the HELP
key is a brief statement or small drawing which will fit easily on the
"page" or screen display which the student is viewing. When this is the
case, such help can be added to the screen by means of a -help- command
if an "inhibit erase" is used to prevent the current display from disap-
pearing.

A better way is to use a -helpop- command. The statement "helpop
hint" specifies that unit "hint" should be done when the student presses
the HELP key, without erasing the screen. After going through unit
"hint", TUTOR returns to the point in the lesson where you were waiting
for the student to press a key. This could be a -pause- statement, the end
of a unit (where you were waiting for the student to press NEXT to



SEQUENCING OF UNITS WITHIN A LESSON

proceed to the next main unit), or an -arrow- command where the student
was entering a response. The fact that TUTOR returns to the waiting
point is an additional advantage of -helpop- over the -help- command,
since return from an ordinary help sequence goes all the way to the
beginning of the base unit, rather than to the waiting point. (Since the
original display is still on the screen when -helpop- is used, there is no
need to redo the base unit to restore the screen display.) No -end-
command is needed in a -helpop- unit, unlike a -help- unit.

The set of on-page commands includes -helpop-, -help lop- (associa-
ted with the HELPI or shift-HELP key), -dataop-, -datalop- (for the
DATAl key), -labop-, and -lablop- (LABI key). The -termop- command
mentioned earlier permits TERM-associated displays "on the page".

For moving among main units there are the commands -nextop-,
-nextlop-, -backop-, and -backopl-. These are just like -next-, -nextl-,
-back-, and -backI-, except that the screen is not erased when proceeding
to the named unit. These features can be mixed in one unit. If a unit
contains a -nextop- command and a -back- command, the screen will not
be erased when NEXT is pressed, but it will be erased if BACK is
pressed.

The -imain- Command

An alternative to "TERM-index" is to tell the student to press a key
such as shift-DATA to reach an index page. If this index is in unit "table",
you must then put the statement "datal table" in every main unit, since
all unit pointers are cleared when a new main unit is entered. A better
way to do this is to use an -imain- command which specifies a unit to be
done initially in every main unit:

imain setit

unit a unit a
do setit

unit b unit b
do setit

unit c unit c
do setit

unit setit unit setit
data1 table data1 table

73



The TUTOR Language

The -imain- command names unit "setit" to be done at the beginning of
every main unit. This saves you the trouble of placing the statement
"do setit" at the beginning of each main unit.

Yau can specify all kinds of initializations to be performed in each
main unit. For example, you might advertise the shift-DATA key with
this display at the bottom of the screen:

I Press shift-DATA for an index

In this case you would write something like:

imain setit

unit
data1
at
write
box

setit
table
3218
Press shift-DATA for an index
3217;3148

Now the display will appear with eaeh main unit, and the shift-DATA
key will be activated. (Incidentally, if you have blank -pause- commands
in your units, pressing shift-DATA will merely take the student past the
pause, not to the table of contents. Similarly, pressing the TERM key at a
blank -pause- will not offer TERM capabilities but will merely take the
student past the pause. Rather than use a blank -pause-, use a statement
such as "pause keys""next,datal,term", as discussed in Chapter 8. With
this kind of pause, pressing shift-DATA will take the student to the index,
and pressing TERM will give normal TERM features, while pressing
NEXT will take the student past the pause. Other keys are ignored.)

The -imain- command sets a pointer, just as the -help- and -base-
commands do. You can change the associated unit by executing another
-imain- command:

imain setit

imain other

Notice that the new "imain" unit will not be done immediately, but only
when a new main unit is entered. You must add the statement "do
other" if you want unit "other" to be done immediately. You can stop
having an imain-associated unit done by using "imain q", or "imain"
(blank tag), to clear the -imain- pointer.

74



SEQUENCING OF UNITS WITHIN A LESSON

While any key may be used to access an index, many authors have
agreed to use shift-DATA in order to provide some uniformity from one
lesson to another. This procedure reduces the number of new conven-
tions a student must learn when studying new material.

There is a similar -iarrow- command which can be used to specify a
unit to be performed every time a student enters a response. If the
-iarrow- command is itself located in the -imain- unit, all-arrow-s will be
affected.

75



Joe
76



Conditional
Commands 6

It is important to be able to specify the sequencing of a lesson
conditionally. We might like to jump past some material on the condition
that the student has demonstrated mastery of the concept and needs no
further practice. Or we might like to take the student to a remedial
sequence conditionally (the condition being poor performance on the
present topic). Or, which help sequence we offer might be conditional on
the number of times help has been requested. All of these examples imply
a need for conditional sequencing or branching statements, where the
condition may be specified by calculations involving the status of the
student.

The usefulness of conditional branching is not limited to the
sequencing of major lesson segments, but extends to many calculational
or display situations. For example, we might need to -do- conditionally
one of several possible subroutines in the course of presenting a complex
display to the student. This chapter will show you how to perform these
and similar conditional operations.

Here is an example involving a conditional-do- statement:

unit
calc
jump
*(Continued on the next page.)

setup
N<:=-1
home

77



The TUTOR Language

unit
next
at

,~do
~ at

write
calc
*
unit
write
*
unit
draw
*
unit
circleb
*

home
home
2010
N,neg,uzero,One,utwo
1215
N equals «s,N».
N¢::N+1

neg
Unit "neg",

uzero
210,260;2060;2010

One
50,O,270

unit utwo
write Unit "two".

The new element is the conditional-do- statement in unit "home". If N is
negative, that statement is equivalent to "do neg". If N is zero, the
statement is equivalent to "do uzero", and so on. The statement:

is equivalent to:

do N,neg,uzero,One,utwo

do neg
do uzero
do One
do utwo

if N is negative
if N is zero
if N is 1
if N is 2 or greater

Note that unit "utwo" will come up repeatedly because it is the last unit
named in the conditional -do- statement. The list of unit names can be up
to 100 long:

do N,neg,uzero,One,utwo,dispone,
zon,zip,figure,uItima

If N is 7 or greater, this statement is equivalent to "do ultima".

78



CONDITIONAL COMMANDS

The "conditional expression" (N in this case) can be anything. It can
be as complicated as "3x - 5 sqrt(N)" and can even involve assignments
as in "N¢"35-x". The value of the expression is rounded to the nearest
integer before choosing a unit from the list of units. If the rounded value
is negative, the first unit in the list is chosen. For example, if the
expression is -.4, it rounds to zero, in which case the second unit in the
list is chosen.

In a conditional -do- each unit named may involve the passing of
arguments:

do 3N- 4,circ(25,75),box(45),x,flag,circ( 10,30)
neg 0 1 2 ;;::3

So far we have encountered the following sequencing commands:
-do-, -jump-,-next-, -nextl-, -back-, -backl-, -help-, -helpl-, -lab-, -labl-,
-nextnow-, -data-, -datal-, and -base-. When the tag of such a command is
just a single unit name (e.g., in a statement like "help uheJper"), we say
it is "unconditional". To make a "conditional" statement out of any of
these, we follow the same rule: state the conditional expression, followed
by a list of unit names. So we might have:

Here, as in unconditional pointer-associated statements, "q" means the
"data" pointer is cleared so that the DATA key is disabled. This can be
llsed to cancel the effect of an earlier -data- command in this main unit.
(Remember that all the unit pointers are cleared when we start anew
main unit.) The unit name "x" has the special meaning "don't do
anything!" In the example shown, if the condition (N~·5) is three or
greater, this -data- command has no effcct at all and we "fall through" to
the next statement without affecting the "data" pointer. Similarly, if a
unit name in the conditional -do- discussed above is replaced by "x", no
unit will be done for the corresponding condition and we "fall through"
tothe next statement.

This "x" option is extremely useful. Consider the following situa-
tion:

79



The TUTOR Language

jump correct-5,x,done
(then show the next item)

If (correct-5) is negative (that is, the student has made fewer than 5
correct answers), we "fall through" to the presentation of the next item.
If, however, the student has 5 or more correct, the condition (correct-5)
will be zero or greater and we jump to unit "done".

Logical Expressions

The last example can be written in an alternative form which
improves the readability:

jump correct<5,x,done

This says "fall through if correct is less than 5, otherwise jump to done".
The condition (correct<5) we call a "logical expression" because it has
only two possible values, "true" (-1) or "false" (0), whereas numerical
expressions can have any numerical value. Since a logical expression can
have only two values (-1 if true, or 0 if false) it is pointless to list more
than two unit names after the condition.

Actually, because of rounding, the form "jump N<5,x,done" is
more precise than the form "jump N-5,x,done". Suppose that N is 4.8.
Then "N <5" is true (-1), which rounds to -1, which implies "x". But
"N-5" is -0.2, which rounds to zero, which implies "done". Such
differences appear whenever you have variables which can have non-
integer values.

Here is another example:

do c-b,far,near,far

The above will do unit "near" if c and b differ by no more than 0.5, since
(in that case) "c-b" will lie between --0.5 and +0.5, which rounds to
zero. On the other hand:

do c=b,same,diff

will do unit "same" only if c and b are equal. The condition "c=b" is true
(-1) only if c is equal to b.

There are six basic logical operators: =, 1', <, >, :5, and 2:, which
mean equal, not equal, less than, greater than, less than or equal, and

80



CONDITIONAL COMMANDS

greater than or equal. The statement "do a¥b,diff,same" is equivalent to
"do a=b,same,diff". These comparison operators consider two numbers
to be equal if they differ by less than one part in 1011 (relative tolerance)
or by an absolute difference of 10-9, whichever is larger. This is done to
compensate .for small roundoff errors, inherent to computers, due to their
very high but not infinite precision. One consequence is that all numbers
within 10-'9 of zero are considered equal by these logical operators. If
it is necessary to test very small numbers, scale up the numbers:
1000a<1000b can be used if a and b are larger than 10-12 (since
multiplying by 1000 brings the quantities up above the 10-9 threshold).

You can mix logical expressions with numerical expressions in many
effective ways. For example:

calc x<:=100-25(y>13)

gives "x<:=125"if y is greater than 13 ("y> 13" if true is -1) or it gives
"x<:=100"if y is less than or equal to 13 ("y> 13" if false is 0). To clarify
this, suppose that y is 18 or y is 4:

y=18
100-25(y>13)
100-25(18) 13)
100-25( -1)
100+25
125

y=4
100-25(y>13)
100-25(4)13)
100-25(0)
100-(0)
100

In these applications it would be nice if "true" were +1 rather than -1,
but the much more common use of logical expressions in conditional
branching commands dictates the choice of -1 (since the first unit listed
is chosen if the condition is negative).

You can combine logical expressions. For example:

U3<b) $and$ (b<5D

is true (-1) only if both conditions (3<b) and (b<5) are true. In other
words, b must lie between 3 and 5 for this expression to have the value

Similarly,

(y>x) $or$ (b=2)

will be true if either (y>x) is true or (b;=:2)is true (or both are true).
Finally, you can "invert" the truth of an expression:

81



The TUTOR Language

not(b=3c)

is true if (b=3c) is not true. This complete expression is equivalent to
"b~3c".

The combining operations $and$, $or$, and "not" make sense only
when used in association with logical expressions (which are -1or 0).
For instance, [b>c $and$ 19] is.meaningless and will give unpredict-
able results. (If you have done a great deal of programming, you might
wonder about special bit manipulations, but there are separate operators
for masking, union, and shift operations, as discussed in Chapter 10.)

The Conditional -write- Command (-writec-)

A very common situation is that of needing to write one of several
possible messages on the screen. For example, you might like to pick one
of five congratulatory messages to write after receiving a correct response
from the student:

unit

C5F~~ndu

do
*
unit
write
*
unit
write
*
unit
write
*
unit
write
*
unit
write

congrat
N,5 $$ let TUTOR pick an integer from 1 to 5
1215
N- 2,ok1,ok2,ok3,ok4,ok5

ok1
Good!

ok2
Excellent!

ok3
I'm proud of you.

ok4
Hurray!

ok5
Great!

The -randu- command, "random on a uniform distribution," tells
TUTOR to pick an integer between 1 and 5 and put it in N. We then use
this value of N to do one of five units to write one of five messages. There
is a much more compact way of writing this:

82



CONDITIONAL COMMANDS

unit
randu
at

~=:>writec

congrat
N,5
1215
N~2,Good !,Excellent!,
I'm proud of you.,
Hurray!,Great!,

The -writec- command is similar to that of a conditional branching
command, but the listed elements are pieces of text rather than unit
names. Because -write- can be used to display any kind of text (including
commas), it is necessary to use a different command name (-writec-) to
indicate the conditional form of -write-, whereas in branching statements
the commas separating the unit names are enough to tell TUTOR that it is
a conditional rather than an unconditional form. (In conversation,
"writec" is pronounced "write-see.")

You can write whole paragraphs with nice left margins, just as with
the -write- command:

writec N,,,Good!,Excellent!,
I'm proud of
you and so
is your mother.,
Hurray!,Great!,

The elements of text are set off by commas. If N is 3, the student will see a
three-line paragraph, since there are no commas at the end of "of" and
"so". If N is -1 or 0, no text will be displayed, since there is no text
hetween the first few commas. Note that "x" is not the fall-through that it
is for a unit name in a conditional branching command. Here, "x" is a
legitimate piece of text which can be displayed, so the ",," form is the
"fall-through" .

If you want commas to appear in some of your text elements, you
have a problem, since the commas delimit elements. Consider this:

writec N,Hello!,How are you, Bill?,Hi there!,

If N is zero, we will see "How are you", not "How are you, Bill?" The
solution is to use a special character (t):

writec NtHello!tHow are you, Bill?tHi there!t

Now, if N=0 we will see "How are you, Bill?" While this special
character (t) is required if text elements contain commas, you may prefer
to use it always, even when there are no commas. This special character is
often called "the writec delimiter".

83



The TUTOR Language

The same kinds of embedding of other commands which are permit-
ted by -writc- are also permitted with -writec-:

writec 2c'=b,1 have «s,app apples.,
I will buy «s,peachyp peaches.,

The -writec- is affected by -size- and -rotate- commands, just like -write-.

The Conditional -calc- Commands: -calcc- and
-calcs-

The effects of -writec- can bc achievcd by a conditional -do- and a
bunch of units containing the text elements, but we have seen that this is
a clumsy way to do it. We would often like to calculate one of several
things based on a condition. This, too, could be done with a conditional
-do- to one of several units containing the calculations, but this is
cumbersome. We saw one shortcut already:

calc x<:=100~25(y>13)

This statement is equivalent to "x<:=125"if y> 13, and to "x<:=100"if y::S:13.
This can also be written as:

calcc y>13,x<:=125,x<:=100

The -calcc- (pronounced "calc-see") is strictly analogous to -writec-. It
indicates a list of calculations to be performed, dependent on a condition.
The elements in the list are calculations rather than pieces of text or unit
names.

Very often each of the calculations in the list consists of assigning a
value to the same variable. In the example above, both calculations assign
a value to the variable "x". An even shorter way to write this kind of thing
is:

cales N-5y,bin<:=37,5.2,y3+2,,2/N

The -calcs.- (pronounced "calc-ess") will s.toreone of five values in "bin",
depending on the condition "N-5y" . Note that if "N -5y" rounds to two,
we do nothing. Two commas in a row (,,) indicate "do nothing" in -cales-,
-calcc-, and -writec-. Just as "x" can be a legitimate piece of text to write,
so "x" might be a dcfined variable, which is why it cannot be used as the
"do-nothing" indicator in these commands.

84



CONDITIONAL COMMANDS

The Conditional -mode- Command
For completeness it should be mentioned that the -mode- command

can also be made conditional:

mode count-3,write,x,rewrite,erase,write

Here the list of elements following the condition is similar to the list of
unit names in a -help- command. In this case, they are the names of the
various possible screen display modes. The "x" option means "do
nothing-do not change the present mode."

The -90tO- Command
The -goto- command is a very mild version of the -jump- command.

It does not initiate a new main unit and does not perform the initializa-
tions associated with starting a main unit (the screen is not erased, the
help and other unit pointers are not cleared, and how deep we are in "do"
levels is unaffected), It is most often used in its conditional form so we
waited until this chapter to introduce it.

One common use of the -goto- command is to "cutoff" a unit
prematurel y:

unit
at
write

~g~to
size
at
write
size
*

A
1315
You have now finished the quiz.
score<90,fair,x
4
2205
Congratulations!
o

unit B
at 1912
write The next topic is ... , .

unit
at
write
*
unit

fair
1815
Your score was below 90.

blah

85



The TUTOR Language

In this example, a score of 90 or better will mean that we fall through the
-goto- to display the large-size "Congratulations!" A score of less than 90
will take us to unit "fair" to add "Your score was below 90" to the "You
have finished the quiz" already on the screen. The -goto- does not erase
the screen, nor does it change the fact that the main unit is still "A". When
the student presses NEXT, he proceeds to unit "B", the main unit
following unit "A". He does not proceed to unit "blah".

Like -do-, the -goto- command attaches a unit without changing
which unit is "home", whereas -jump- changes the main unit and
performs the many initializations associated with entering a new main
unit (full-screen erase, clearing the help pointers, forgetting any -do-s,
etc.). The main difference betwecn -goto- and -do-, is that the -do- will
normally comc back upon completion of the attached unit, whereas -goto-
does not come back and statements following the -goto- are normally not
executed. (Some people like to think of the -goto- coming back to the end
of the unit, whereas -do- comes back to the next statement.)

The relationships among main units and attached units and among
-jump-, -goto-, and -do- may be clearer if you think of a lesson as being
made up of a number of nodes or clusters, each consisting of a main unit
and its attached units:

86

Subroutine attached by -do-.
Subroutine uses -goto-, but
l--etul~n:$ to ma in un it.

This unit attached
with -goto-. The
main unit i$ not
chanlied.

Fig. 6-1.



CONDITIONAL COMMANDS

Movement between main units is made by pressing NEXT (or HELP,
BACK, etc.) or by executing a -jump-. These main units may form a
normal sequence or a help sequence (see Chapter 5). The -goto- and -do-
commands attach auxiliary units to these main units.

Notice that completion of a unit reached by one or more -goto-s will
cause TUTOR to "undo" one level, if one or more -do-s had intervened in
reaching this unit. The reason this occurs is that whenever TUTOR
encounters a -unit- command (which terminates the preceding unit)
TUTOR asks "Are we at the main-unit level?" If so, we have completed
processing; if not, we must "undo" to the statement immediately follow-
ing the last -do- encountered. This point deserves an illustration:

unit calcit
do sum
show total

unit
calc
goto
*

sum
totaf¢-=0 $$ initialize "total"
addup $$ -goto- used instead of -do-, for

$$ purposes of illustration
unit addup

$$ a calculation of "total"

unit other

In unit "calcit" we -do- "sum", which initializes "total" and does a
-goto- to unit "addup", where some kind of calculation is performed.
When we run out of work (by encountering a -unit- command at the end
of unit "add up" ), TUTOH asks whether there was a -do-. There was a
-do-, so control passes to the statement following the last -do-, which is
"show total". All of this is perfectly reasonable and useful, but it should
be pointed out that this property of the -goto- (that it preserves the
required information to permit "undoing") has an odd side-effect. The
presence of a -goto- in a done unit causes an exception (the only
exception) to the description of -do- as a text-insertion device. Except for
this case, the effect of a -do- is equivalent to inserting all the statements,
contained in the done unit, in place of the -do- statement. But suppose we
replace our -do- with the statements contained in unit "sum". We would
have:

87



The TUTOR Language

unit
calc
goto
show
*

calcit
total<:=:0}. I f "d

dd In pace 0 0a up
total

sum"

unit addup

unit other

Now the -goto- cuts off the rest of unit" calciC, and the -show- will not be
performed, in contrast with the case where we used a -do-. So, the
presence of a -goto- in a done unit causes a (useful) exception to the
text-insertion nature of -do-.

Here is a summary of the basic properties of the -goto- command:
1) -goto- may be uscd to attach units with none of the initializations

associated with -jump-;
2) statements which follow the -goto- will not be executed (like

-jump- and unlike -do-);
3) a -goto- in a done unit does not cut off statements following the

original -do- statement, which is an exception to the normal
text-insertion nature of -do-.

Additional aspects of -goto- (in relation to judging student responses) are
discussed in Chapter 8.

It is often convenient to cut off a unit with a -goto- in the form shown
in this example:

unit cuts
goto expression,x,zonk,empty,x,empty
write We fell through ...

unit empty
*
unit lOnk

88

Note that unit "empty" has nothing in it but serves merely to have a place
to go to in order to cut off the end of unit "cuts". This is such a common
situation that TUTOR provides an empty unit named "q" (for quit). The
previous -goto- can be written as:



CONDITIONAL COMMANDS

goto expression,x,zonk,q,x,q

The statement "goto q" means go to an empty unit. The special
meaning of "q" here makes it illegal to have your own unit named "q",
just as it is not possible to name a unit "x". Since "do empty" can be
rendered by the equivalent "do x", the statement "do q" (or a condi-
tional form) is given the special interpretation of acting like a "goto q".
The use of "q" in a -goto- statement is somewhat different from the use of
"q" in a -help- statement. You will recall from Chapter 5 that "help q"
means to quit specifying a help unit, by clearing the -help- pointer.

The -goto- can be used in association with the -entry- command to
skip over statements:

calc
goto
calc

b¢;:0
3f>5,leavit,x
b¢;:f/2
f¢;:0
leavitcs:g= ~ntry

If 3f is greater than 5, we skip over intervening statements to entry
"leavit". The -entry- command is equivalent to a special -goto- plus a
cunit-:

{
special goto leavit} . I ( ,. ). I.t equrva ent to entry eavltunit eavl

So,unlike a -unit- command, -entry- does not terminate a unit but merely
provides a named place to branch to. Its equivalence to a special hidden
-goto-followed by a -unit- command means that an entry is completely
equivalent to a unit, except for not terminating the preceding statements.
Forthis reason it is possible to use an entry name with -do-, -jump-, -help-,
etc.

89



The TUTOR Language

The conditional -goto- is often used for repetitive operations similar
to those carried out with -do-. Here are two versions of a subroutine to
add the cubes of the first ten integers:

-do- -goto-
unit add unit add
calc total¢:0 calc i¢:1
do add2,i¢:1,10 total¢:0
* goto add2
unit add2 *
calc totaI¢:totaI +i3 unit add2

calc totaI¢:totaI +j3
i¢:i+1

goto i$10,add2,x

The last two statements in the -goto- example could be combined lilS:

goto (i¢:;+ 1)$10,add2,x

For the simple task of adding ten numbers, the -do- form is certainly
easier to construct, but situations occasionally arise where it is easier to
construct a repetitive loop using a conditional -goto-.

Except for not changing how many levels deep in -do-s we are, -goto-
is quite similar to -do-. Although the feature is seldom used, it is even
possible to pass arguments to a subroutine with a -goto-:

goto zonk( 12,25)

Arguments may also be passed in a conditional -goto-:

goto 3N-4,aJpha(2+count),x,beta(15,2N),q

The Conditional Iterative -do-

The conditional and iterative -do- can be combined so that, on each
iteration, the conditional expression selects which unit to do this time:

do N+3,ua,ub,uc,ud,i¢:1, 12

Jg \ \ \2
90



CONDITIONAL COMMANDS

For each value of i (from 1 to 12), the expression "N +3" is evaluated,
which determines which subroutine will be done. For example, if "N +3"
is 0, the above statement is equivalent to "do ub,i<:=:1,12".Usually a
conditional iterative -do- is used in situations where the conditional
expression ("N +3") is not changing, but doing one of the subroutines
call change N so that a different subroutine is used on the next iteration.
Thc following is an example of such manipulations:

do j-2,ua,ub,uc,ud,i<:=',4

In the first case, where i is equal to 1, the condition "i -2" is -1, so we do
"ua", Then i is incremented to 2, and we do "ub", etc. This is, therefore,
equivalent to the sequence:

do ua
do ub
do uc
do ud

As usual, the specified units can involve the passing of arguments.
In a conditional non-iterative -do- the unit names "x" and "q" mean

"don't do anything" and "goto q" respectively. In a conditional itera-
tive -do-, "x" means "don't do anything on this iteration," and "q" means
"quit doing this statement and go on to the next statement." In other
words, "x" means "fall through to the next iteration," while "q" means
"fall through to the next TUTOR statement." For example:

do
show

j- 2,ua,x,q,ud,i¢:1,4
i

will display the number "3". For i equal to 1 we do "ua"; for i equal t02
we do nothing; for i equal to 3 we quit and go on to the following -show-
statement.

The -if- and -else- Commands

Suppose you want to do one set of statements if x is greater than y,
and a different set of statements. One way to do this, as we have seen, is to
put the two sets of statements in two different units and write "do x>y,
unita, unitb". Another way to perform these operations is to use -if- and
-else- commands:

91



The TUTOR Language

if

Done if x>y { :
else

Done if x:5y { :
endif

x>y
calc Z<:=5y
draw x,Z;x+100,Z+100

at x,y
circle 50

The statements between the -if- and -else- commands are performed only
if x is greater than y, and the statements between the -else- and -end if-
commands are performed otherwise. The tag of the -if- command must be
a logical expression (one that has values -lor 0). The tag of the -else-
command must be blank. The -endif- command identifies the end of the
sequence.

Note that the statements bracketed by -if-, -else-, and -endif- must be
indented, with an initial period identifying them as indented statements.
(It is possible that the details of this indenting format may change.
Consult on-line PLATO aids for up-to-date information.)

When do you use a conditional -do-, and when do you use -if- and
-else-? This depends mainly on the number of statements involved. If
there are few statements to be performed, -if- and -else- is probably more
readable. But, if "unita" and "unitb" are long subroutines, the condition-
al -do- is the more convenient form.

There doesn't have to be an -else-:

if x>y
calc Z<:=5y
draw x,Z;x+100,Z+100

endif

This will do the -calc- and -draw- only if x is greater than y.
There is also an -elseif- for specifying an additional condition:

if

Done if x>y { :

x>y
calc
draw

Z<:=5y
x,Z;x+100,Z+100

92



elseif
Done if x> .5y \.
but x not .
greater than .
y .

Done if else
neither of
the above
is valid

{:
endif

x>.5y
at
write

at
write

1225
This paragraph will be
displayed only if x is
not greater than y but
is greater than .5y.

1225
x is less than .5y!

CONDITIONAL COMMANDS

if

It is possible to have additional levels of indented -if- structures:

A second {'level of .
indenting :

else

endif

a=b
calc
if

else

endif

at 912
show x

$or$ b>3
x¢:b+2
count<8
at 2513
write Two levels!

do subr

The text "Two levels!" will appear on the screen if (a=b $or$ b>3)
and if (count<8).

93



Joe
94



Judging Student Responses 7

You now know quite a bit about how to express (in the TUTOR
language) your instructions to PLATO on how to administer a lesson to a
student. You may not have realized it, but in the process you have learned
a great deal about the fundamental concepts of computer programming.
You can calculate, produce complex displays, and construct rich branch-
ing structures. You have studied aspects of initialization problems, you
have seen the importance of subroutines, and you have looked at some
stylistic aspects of good programming practice such as defining variables,
placing unit pointer commands at the head of main units, etc. With this
solid background you are now re"adyfor a detailed look at how to accept
and judge student responses.

In Chapter 1 you saw a common type of judging situation in which
you simply listed the anticipated responses after an -arrow- statement,
together with the display or other actions to be performed depending on
the particular response. Let us see how TUTOR actually processes these
judging commands. We will consider a slightly different version of the
"geometry" unit. Remember that in the -answer- and -wrong- statements,
parentheses enclose synonyms, and angle brackets enclose ignorable
words.

95



The TUTOR Language

unit
draw
arrow
at
write
answer
write
wrong
write

96

geometry
510;1510;1540;510
2015
1812
What is this figure?
<it,is,a> (right,rt) triangle
Exactly right!
<it,is,a> square
Count the sides!

What l~ thl~ fiii:Ur~?

Fig. 7-1.

The order of the initial statements has been changed slightly. TUTOR
starts executing this main unit by drawing the triangle. TUTOR next
encounters the -arrow- command, places an arrowhead at position 2015,
and notes where this -arrow- command is (the second command in unit
"geometry"). TUTOR then executes the -at- and -write- to display the
text: "What is this figure?"

Finally, TUTOR reaches the -answer- command. This "judging"
command is useless at this time because the student has not entered a
response. There is nothing more that can be done but wait for the student
to type a response and enter it by pressing NEXT. We call commands
which operate on the student's response "judging" commands (such as
-answer- and -wrong-). Other commands, such as -draw-, -at-, -write-, and
-calc-, are called "regular" commands. We see that TUTOR must stop
executing regular commands when a judging command is encountered.
(This assumes the presence of an -arrow- command. An -answer- or other
judging command without a preceding -arrow- is meaningless.)

When the student presses NEXT to enter his or her response,
TUTOR looks at its notes and finds that the -arrow- was the second
command in unit "geometry". TUTOR starts looking just beyond there
for judging commands to process the student's response. It skips the
regular commands -at- and -write- since these are not judging commands
and are of no use at this point. It encounters the -answer- command and
compares the student response with the specifications given in the tag of
the -answer- command.



JUDGING STUDENT RESPONSES

If there is not an adequate match, TUTOR goes to the next command
looking for a judging command that might yield a match. In this case, the
following command is a regular command (-write-) which is skipped.
Next there is a -wrong- judging command, and if there is no match to the
student's response, TUTOR keeps judging. At this point, therc is a -write-
regular command which is skipped.

Finally, we come to the end of the unit without finding a matching
judging command and must give a "no" judgment to this response (and
possibly mark up the response with underlining and X's if the response is
fairly close to that specified by the -answer- command). (See Figure 7-1.)
The process of starting immediately after the -arrow- in the "judging
state" will be repeated each time the student tries again with a reviscd
response.

If, on the other hand, the response adequately matches the -answer-
statement, TUTOR has found a match and can terminate the execution of
judging commands. It switches to processing regular commands with the
result that the following "write Exactly right!" will be executed. (This
regular command is skipped unless a match to the -answer- flips TUTOR
out of the "judging state" into the "regular state".) Then TUTOR, in the
regular state, comes to a judging command (-wrong-) which terminates
the processing. TUTOR finishes up by placing an "ok" beside the student
response. (Similarly, a match to the -wrong- would flip TUTOR to the
regular state to execute the regular statement "write Count the sides!")

When the -arrow- is finally "satisfied" by an "ok" judgment, TUTOR
returns one last time to the -arrow- and searches for any other -arrow-
commands in the unit. In this search it skips both regular and judging
commands. In our particular example no other -arrow- is found, so all
arrows (one) in the unit have been satisfied. After the student has read our
comment, he or she presses NEXT and proceeds to the next main unit.

It may seem wasteful to you that TUTOR keeps going back to the
-arrow- only to skip over the regular commands preceding the first
j\ldging command. It turns out that skipping a command is an extremely
fast procedure, and that keeping a single marker (the location of the
-arrow- command within the unit) grcatly simplifies the TUTOR machin-
ery.

In the example, the replies "Exactly right!" or "Connt the sides!"
would be displayed at location 2317, three lines below the response on
the screen. This standard positioning can, of course, be altered by an -at-
statement. Here is another illustration:

unit
at
write

(Continued on the next page.)

canine
2105
Name a canine:

97



The TUTOR Language

arrow
answer
write
answer
write
wrong
write

2308
dog
A house pet.
wolf
A wild one!
cat
A feline!

Suppose the student enters "wolf" as his response. TUTOR initiates the
"judging state" just after the -arrow-. The first -answer- (dog) does not
match, so TUTOR stays in the judging state and skips the "write A
house pet." There is a match to the following "answer wolf", so judging
terminates and the regular state starts. The "write A wild one!" is
executed, not skipped. Next, TUTOR encounters a "wrong cat", and
since -wrong- is a judging command, this terminates the regular state.
The student gets an "ok" judgment. TUTOR searches for another -arrow-
but does not find one, so the student has successfully completed the unit.
(Various units of this kind are illustrated with animated diagrams in the
on-line "aids" available on PLATO.)

This method of processing judging and regular commands yields a
readable programming structure, with judging commands delimiting the
regular commands used to respond to the shldent. We have spent time
discussing the details in order to simplify our later descriptions of the
various types of judging commands used to match, modify, or store
student responses.

It is important to point out that the -do- and -goto- commands are
regular commands. They are, therefore, skipped over during the judging
state and <iluringthc search state (looking for a possible additional -arrow-
after an arrow has been satisfied). There is another command, -join-,
which works much like -do- except that the -join- command is universally
executed whether TUTOn is in the regular state, the judging state, or the
search state. In particular, it is possible to -join- units containing judging
commands, whereas a -goto- or -do- is incapable of accessing other units
in the judging state (since these regular commands arc skipped). Al-
though the -do- command acts essentially like a -join-, it is, nevertheless,
a regular command and is skipped during the judging and search states.
Only the -join- command itself has the unique characteristic of being
performed in all states (regular, judging, and search).

It is frequently useful to handle more than one response in a unit.
Let's ask "Who owned Mount Vernon?" and (after receiving a corred
response) ask in what state it is located but stay on the same page:

98
unit wash
at 812



write
arrow
answer
at
write
wrong
at
write
arrow

(

at
write
answer

JUDGING STUDENT RESPONSES

Who lived at Mount Vernon?
1015
<George,G> Washington
1120
Great!
Jefferson
1112
No, he lived at Monticello.
1715
1512
In what state is it located?
(Va,Virginia)

If you say "Jeflerson" the -wrong- is matched. Regular commands are
executed until you run into the second -arrow-, which ends the range of
the first -arrow-. In other words, when you are working on one -arrow-,
the next -arrow- is a terminating marker. If you say "Washington", the
student gets the "Great!" comment. Since the -arrow- is now satisfied,
TUTOR starts at the first -arrow- searching for another -arrow-. In this
search state, all commands other than -join- are skipped (-join- may be
used to attach a unit that contains another -arrow-). A second -arrow- is
encountered, which changes the search state into the regular state. The
arrowhead is displayed on the screen and the location of this -arrow-
within the unit is noted. The regular commands following this second
-arrow- are processed to display the second question. The final -answer-
command stops this processing to await the student's response.

There is another way to do this which is probably more readable:

unit
next
at
write
arrow
answer
at
write
wrong
at
write

~endarrow
~ at

write
arrow

{ answer

wash
wash
812
Who lived at Mount Vernon?
1015
<George,G> Washington
1120
Great!
Jefferson
1112
No, he lived at Monticello.

1512
In what state is it located?
1715
(Va,Virginia) 99



The TUTOR Language

The -endarrow- command defines the end of commands associated with
the first -arrow-. Note that -endarrow- changes the search state to the
regular state. One benefit of this form is that the second arrowhead
appears on the screen after the text of the second question, which often
seems morc natural.

It may seem rather abrupt that the "Great!" and "In what state is it
located?" both appear on the screen at the same time. Itmight be better to
let the student digest the reply before presenting the second question. We
might insert a -pause- (with the tag "keys=all") just after the -endarrow-.
Now TUTOR waits for you to press a key, (which signals that you want to
go on) before presenting the next question.

The -endarrow- command is quite useful even in units which contain
only one -arrow-:

arrow
answer
write
answer
write
wrong
write

[~endarrow
calc
circle

1213
dog
Bowwow!
wolf
Howl!
cat
Meow.

y<r37+y
100,250,250

The commands following the -endarrow- will be executed only after the
-arrow- is satisfied, whether it be by the response "dog" or "wolf". So this
is a convenient way to finish up the unit.

While it is possible to -join- or -do- units which contain -arrow-
commands, two seemingly arbitrary rules must be followed or you will
get unpredictable results:

1) A unit attached by -join- or -do- which contains one or more
-arrow- commands must end with an -endarrow- command
(possibly followed by regular commands).

2) This attached unit must not contain any -goto- commands.

If you violate either of these rules, strange things will happen
because TUTOR may "undo" from this unit several times (during
judging, while processing regular commands, or in the search state).

100



JUDGING STUDENT RESPONSES

If you follow these two rules, the -join- or -do- will act like a
text-insertion device whereby your program will act as though you had
inserted the attached unit where the -join- or -do- was. We will discuss
these rules in more detail in Chapter 8.

Student Specification of Numerical Parameters

The -answer- and -wrong- commands make it easy to specify a list of
anticipated responses each of which (due to the specification of synony-
mous and optional words) can allow the student considerable latitude ind
the way he or she phrases his or her response. However, in some cases
there can be no list of anticipated responses and a different technique
must be used. For example, you might ask the student to specify a
rocket's launch velocity and use his or her number to calculate and
display the rocket's orbit. Or you might ask the student for his or her
name for later use in personalized messages such as "Bill, you should
look at Chapter 5." In such cases, all you can anticipate is that the
response will be a number or a name, but you can't possibly list all
possible numbers or names.

Here is an example of such a situation. We will provide the student
with a desk calculator accessible on the DATA key. In the desk calculator
mode the student can type complicated expressions (such as "2+63") and
receive the evaluated result. (Students also have access to a similar
calculator mode by typing "TERM-calc", which is a built-in PLATO
feature.)

unit
data
at
write

unit
next
at
write

arrow
r::::cr=' 5to re
"-J.S ok

write

mainline
desk
3020
Press DATA for calculator

desk
desk
1713
Type an expression.
Press BACK when finished.
1915
eval

$$ for repeated use

$$ Be sure to define "eval".
$$ Accept all responses.

The result is «s,eval».

101



The TUTOR Language

The -store- command will evaluate the student's expression (e.g.,
"13sin30°") and store the result in "eval" (in this case, the number 6.5).
The -store- command is a judging command because it operates on the
student's response and can be executed only after the student initiates
judging by pressing NEXT. The -ok- command is a universal -answer-
which matches all responses, and unconditionally flips TUTOR from the
judging state to the regular state. In this example, it accepts any response
and enables the following -write- to display the evaluated result.

Note that a student need not use parentheses with functions. For
example, sqrt25, cos60°, arctan3 are all legal. However, such expressions
are illegal in a -calc-. In a moment we'll see another way in .which
TUTOR is more tolerant of students than of authors.

What if the response cannot be evaluated, such as "(-3)1/2" or "19/"
or "(3+5)))"? In this case, the student will get a "no" judgment. To see
how this works, let's insert a -write- statement after the -store-:

store eval
write Cannot evaluate!
ok

Notice that this new -write- is normally skipped because the -store- leaves
us in the judging state. But, if the student's expression cannot be
evaluated, -store- makes a "no" judgment and switches us from the
judging state to the regular state. TUTOR then executes the "write
Cannot evaluate!", after which it encounters a judging command (-ok-)
which stops the regular processing. Note that -store- terminates judging
only on an error condition, whereas -answer- terminates judging only on a
match, and -ok- always terminates judging.

You can tell the student precisely (in a -writec- statement) what is
wrong with his or her expression by use of the system variable "formok".
This variable is --I if the student's expression can be evaluated but takes
one of several positive integral values for specific errors such as unbal-
anced parentheses, bad form, unrecognized variable name, etc. The
variable "formok" is defined automatically to perform this function. (If
you yourself define "formok=v3" you override the system definition and
you won't get these features.) The particular values assumed by "fonnok"
can be obtained through on-line documentation at a PLATO terminal.

102



JUDGING STUDENT RESPONSES

You can also give the student some storage variables. Let's define a
couple of variables for the student:

define student $$ special define set
bob""'v30,cat==v31

Place these defines ahead of everything else in the lesson. Suppose you do
a -calc- to assign bob¢::18 and cat¢::3.If the student types "2bob" he gets
36. Or he can type "bobcat" and get 54, whereas bobcat would be illegal
in a -calc- where you would need bobxcat or bob(cat). Only names
defined in the set of definitions labeled "student" may be used by the
student in this way. Attempted use (by the student) of names in your
other sets of defines will give a value of "formok" corresponding to
"unrecognized variable name".

We have discussed a desk calculator, but clearly the store/ok combi-
nation will work in any situation where we let the student choose a
number. Another good example is in an index of chapter numbers:

unit
base
term
at
write

arrow
~Iong

store
~no
CiS jump

write

table

index $$ or access by means of shift-DATA,
1218 $$ as in Chapter 5
Choose a chapter:

1) Introduction
2) Nouns
3) Pronouns
4) Verbs

1822
1 $$ get one digit; don't wait for NEXT
chapter

chapter ,x,x,i ntro,u nou n,pron, verb,x
Pick a number between 1 and 4.

(Aspreviously mentioned in Chapter 5, it would be better to execute the
-base- command only after deciding to jump, so that the student could
still use the BACKkey to return to the original unit.) The -long- command
following an -arrow- (but preceding any judging commands) sets a limit
on the length of the student's response. The "long 1" is particularly
useful here because the student need not press NEXT but has only to
press the single number to begin the judging process. (For -long- of
greater than 1 there must be an accompanying "force long" statement or
else a NEXT key is required.) The -long- command must precede any

103



The TUTOR Language

judging command since the "long" specification is needed before the
student starts typing (whereas we proceed past the judging command
only after the student enters a response). The -long- command may be
thought of as a kind of modifier of the -arrow- command, in the sense that
the -arrow- sets a default maximum response length which is overridden
(or modified) by the following -long- statement.

The -no- in this index unit is similar to an -ok- command in that it
unconditionally terminates judging, but the -no- command makes a "no"
judgment. If "chapter" is a number from 1 to 4, the -jump- will take the
student to his chosen chapter. (Since -jump- erases the screen the "no"
will not be seen.) If, however, "chapter" is not in range, we fall through
the -jump- to an error message, and there will be a "no" next to the
response (and the student must try again).

Student Specification of Non-Numerical Parameters

Now that we have seen how to let the student specify a number, let's
see how to ask the student to tell us his or her name or nickname to permit
us to communicate by name:

unit
at
write

meet
1215
Hello, my name is Sam Connor.
What's your name?
1620
8

arrow
long

~storea
ok
write

name
$$ limit to 8 characters
$$ define "name" earlier

Pleased to meet you, «a,name}>!

The -storea- command is a judging command which will store alphabetic
information as distinguished from numeric information. The «a,name»
is the embedded form of the statement "showa name" which will
display alphabetic information. This unit will feed back to you any name
you give it. Notice that you can't enter a name of more than 8 characters
because of the -long- command. TUTOR stores a capital letter as a "shift"
character plus the lower-case letter, so if capitalized, the name must be
shorter because a capital letter counts as two characters. (Insert a
"force long" statement anywhere before the -storea- if you would like
judging to start upon hitting the -long- limit, without having to press
NEXT.)

104



JUDGING STUDENT RESPONSES

A statement of the form "storea name,3" will store just the first
three characters of the student's response. You can get and keep a
character count of the length of the student's name, including "shift"
characters, by referring to the system variable "jcount", which is a count
of the number of characters in the copy of the student response used for
judging-hence the "j". With these facts in mind, change the -storea- to:

storea name,{namlng¢:jcount)

This will store the whole response and save the length. Be sure to define
both "name" and "namIng", but do not define "jcount" or you will
override TUTOR's definition of its function. Also, to show the precise
number of characters, change the embedded -showa- to:

«a,name,namlng»

The reason for saving the present value of "jcount" in "namIng" is
that "jcount" will change at each -arrow- in the lesson, whereas through-
out the lesson you will repeatedly use "showa name,namlng" or <(a,
name,namlng» to call the student by name. So, you want "namIng" to
keep the name length. Incidentally, a -showa- with only a single argu-
ment (such as "showa name") will show ten characters, which is the
number of characters (including shift characters) that will fit in one of
your variables.

It is possible to store alphabetic information which is longer than ten
characters. Change the "long 8" to "long 20". Suppose you've defined
"name=v24." In this case, you must make sure that you are not using v25,
and change your defines if necessary. The 20-character name will need
both v24 and v25 since each variable can hold only ten characters. With
these changes it is possible to enter a long name (e.g., Benjamin Franklin,
which is 19 characters counting shift characters).

Difference Between Numeric and Alphabetic Information

When we were studying the desk calculator unit, we defined a
variable "bob==v30" for the student. Suppose the student responds with
the word "bob". If we use a numeric -store-, we will get the number
presently contained in v30, which might be 529.3. If we use an alphabetic
-storea-, we will get the string of characters "bob" which is simply a name
and nothing more. Perhaps the distinction is most easily seen with an
example, which you should write and tryout at a PLATO terminal:

105



The TUTOR Language

define

define

unit
calc
arrow
store
storea
ok
write

student
bob=v1
ours,student
name=v2,num=v3
test
bob<:='IT
1815
num
name

$$ include "student" set of defines

$$ 'ITmeans 3.14159 .

num=<t:s,num»
name= <t:a,name,jcount»

Consider various responses. For example, "2bob" should give a numeric
2'IT(6.2832) and an alphabetic "2hob". Most often, we speak of "alphanu-
meric" information (letters and numbers) in the latter case. The response
"3-4/5" yields a numeric 2.2 and an alphanumeric "3-4/5".

In other words, a storea/showa combination feeds back exactly the
alphanumeric text entered by the student. However, a -store- involves a
numerical evaluation of the student's response, and a later -show-
converts this numerical result into appropriate characters to display on
the screen (so that you can read the result). You might interchange the
"num" and "name" arguments on the -store- and -storea- commands to
see the unusual things that happen if you pair -store- with -showa-
(instead of -show-) or if you pair -storea- with -show- (instead of -showa-).

To sum up, if you accept numeric information with a -store-, display
it with a -show-. If you accept alphanumeric i~formation with a -storea-,
display it with a -showa-.

More On -answer- and -wrong- (Including -Iist- and -specs-)

There are some additional features of -answer- (and -wrong-) which
should be pointed out. First, -answer- will not only handle word or
sentence responses but will also handle numbers:

answer 7 women <and> 5 men

This -answer- will be matched by a student response of the form "14/2
women and 3+2 men" because simple expressions such as 14/2 or 3+2
are evaluated by the -answer- command. Currently, the -answer- com-
mand will not handle very complicated numerical expressions.

106



JUDGING STUDENT RESPONSES

(Later we will discuss the -ansv- and -wrongv- commands which
handle expressions as complicated as those handled by -store- but
without the sentence capabilities of -answer- and -wrong-. There are also
-ansu- and -wrongu- commands which are similar to -ansv- and -wrongv-
but treat scientific units on a dimensional basis.)

If the student says "37 women and 5 men," the incorrect number 37
will have xx under it, whereas the response "6.5 women and 5 men" will
have the 6.5 underlined since it is nearly correct (similar to a misspelling
of a word). Normally -answer- and -wrong- consider numbers off by less
than 10% to be "misspelled." You can alter these specifications by
preceding the list of -answer- and -wrong- commands with a -specs-
command:

unit
arrow
specs
answer

trial
1815
toler,nodiff
7 women <and> 5 men

The -specs- command is a judging command which affects the operation
of other judging commands which follow it. Here it has been used to
specify that a "tolerance" of 1% is permitted and that "no difference will
be allowed for underlining" (normally 10%). Having specified both
"toler" and "nod iff," any expressions within 1% of 7 and 5 will be
accepted, bot expressions with larger discrepancies will not be under-
lined.

Note carefully that since -specs- is a judging command, it terminates
the processing of regular commands. Among other things, this means that
a -long- command must precede the -specs-, not follow it. If -long- comes
after -specs-, TUTOR could not prevent the student from entering a
longer response (since it could not see the -long- command before it
paused for the student's response).

Here are some other useful applications of -specs-:

specs okcap,okspell
answer the antidisestablishmentarianism doctrine

This allows the student to capitalize words, and specifies that mis-
spellings are to be considered ok. Note that if the -answer- tag contains
capitalized words, the student must also capitalize those words. The
"okeap" makes capitalization optional only for those words you have not
capitalized. You can use -specs- to ignore extra words:

107



The TUTOR Language

specs
answer

okextra
Washington

This states that it is ok to have extra words, so that "It was George
Washington" will be an acceptable response. The following is another
example of -specs- capabilities:

specs noorder
answer apples pears and peaches

This specifies that no particular word order is required. Note the absence
of commas in the -answer- tag. (Such punctuation marks are not allowed
there, but all punctuation marks are ignored in the student's response, so
he or she may use commas). Also, note that "answer apples, pears and
peaches" would represent two synonymous answers, and the student
could respond either with "apples" or with "pears and peaches". There
exists a much less powerful -exact- command (as well as other tech-
niques) for judging particular punctuation when that is necessary. For
example, it is possible to use the -change- command to redefine the
comma to be a "word" rather than a punctuation mark. In that case, some
otherwise unused character must be defined to take the place of the
comma in specifying synonyms.

specs nookno
ok

Here we specify that no "ok" or "no" be displayed beside the student's
response, contrary to the normal situation. (As an alternative, the
-okword- and -noword- commands can be used to change the words
TUTOR uses from "ok" and "no" to something else.)

(For other -specs- capabilities see reference material described in
Appendix A.)

Another important feature of -specs- (in addition to its use in
specifying various options) is that it marks a place to return to after
judging. Consider the following unit. You do not define the system
variable "spell".

unit
at
write
arrow
specs

Iat
~ writec

108

presi
1212
Name one of the first three U.S. presidents.
1513
bumpshift $$ delete shift codes
2508
spell,No misspellings!,
Underlining indicates a misspelled word.



JUDGING STUDENT RESPONSES

answer washington
write Good old George.
answer adams
answer jefferson

Suppose the student types "WASHINGTON". TUTOR starts judg-
ing just after the -arrow- and encounters -specs-, a judging command. The
tag ("bumpshift") tells TUTOR to change the response to "washington"
for judging purposes. (Incidentally, this operation changes "jcount", the
character count of the judging copy of the student's response, from 20 to
10 because the "shift" characters are knocked out.) Moreover, TUTOR
makes a note that it encountered a -specs- command as the fourth
command in unit "presi", and this marker will be used in a moment.
TUTOR skips the following -at- and -writec- because regular commands
are skipped in the judging state.

Next, TUTOR encounters "answer washington" which matches the
student's (altered) response, and this terminates judging. The succeeding
regular commands are processed as usual. In this case, there is only a
"write Good old George" before we run into another judging command
("answer adams") which stops the processing.

Actually, processing has not completely stopped. It is at this point
that TUTOR asks one last question: "Did I pass a -specs- command in
processing this response?" The answer is yes (at the fourth command in
unit "presi"). TUTOR now processes any regular commands following
that -specs- marker. In this case, TUTOR does an "at 2508" and a
-writec- before finally being stopped (really stopped this time) by the first
-answer- command.

The -writec- refers to the system variable "spell" which is true (-1) if
the spelling is correct, and false (0) if a misspelling has been detected.
The variable "spell" is -1 if there are no underlined words, but there
may be Xed words (words that are completely different).

The usefulness of the marker property of -specs- is that you can
specify a central place to put messages and calculations, which should be
done no matter which judging command is matched. We will see
additional applications of this useful feature of -specs-. Notice that a later
-specs- command will override an earlier -specs- marker in a manner
analogous to the way a later -help- command overrides an earlier setting
of the "help" marker. Note, too, that if no regular commands follow the
-specs-, TUTOR finds nothing to do when it comes there after being
nearly stopped as described above. This was the situation in our previous
examples such as:

specs nookno
ok

109



The TUTOR Language

In this example, there are no regular commands between the -specs- and
the -ok-.

Let us return for a moment to the -answer- command. We had
examples involving synonyms such as (right,rt) or (Va,Virginia). A
convenient way to specify synonym lists which occur frequently in a
lesson is to define a -list-:

Iist affirm, yes,ok, yep, yea h,su re,eertainly

Here "affirm" is the title of a list of synonyms ("affirm" is not itself a
member of that list). With this definition, which should be placed at the
very beginning of your lesson along with your -define- statement, you can
write:

answer
wrong

((affirm))
maybe ((affirm))

These are equivalent to:

answer
wrong

(yes,ok, yep, yea h,s ure ,ee rta inIy)
maybe (yes,ok,yep,yeah,sure,eertainly)

Note that "answer we affirm" does not imply this list of synonyms, just
as a single important word by itself does not refer to a list. You can use the
list equally well to specify optional words, as in:

answer «affirm» it is

Here <<affirm> > is equivalent to <yes,ok,yep,yeah,sure,certainly>. Note
that <affirm> merely refers to the single word "affirm". Double marks are
needed to refer to the list whose title is "affirm". You can combine
references to synonym lists with individual words. For example:

wrong
answer

usually (definite, (affirm))
often <definite, <affirm> >

The following list might also be particularly useful:

list negate,no,nope,not,never,huhuh

110

This covers the main capabilities of the -answer- and -wrong-
commands and their associated -list- definitions. The -specs- command
may be used to modify how -answer- works and also serves as a useful
marker. The marker function of -specs- is not limited to -answer- but
holds for any judging commands which follow it, including -ok- and -no-,



JUDGING STUDENT RESPONSES

The -answer- (or -wrong-) command can nicely handle responses
which involve a relatively small vocabulary of words. It is, therefore,
adequate when the context limits the diversity of student responses (such
as foreign language translation drills where there are only a few permissi-
ble translations of the sentence and each such sentence contains a rather
small number of allowable words). The detailed markup of the response
provides the student with useful feedback in such a drill.

The -answer- command is not well-suited to a more free dialog with
the student where the context is broader and where the vocabulary used
by the student may encompass hundreds of words. In the next section we
discuss the -concept- command which can cope with more complexity.

Building Dialogs With -concept- and -vocabs-
An excellent example of a dialog is a lesson on qualitative organic

chemistry analysis written by Prof. Stanley Smith of the Department of
Chemistry, University of Illinois, Urbana. This lesson heJps students
practice their deductive skills on PLATO before they identify unknown
compounds in a laboratory. Prof. Smith has PLATO randomly choose
one of several organic compounds and then invites the student to ask
experimentally-oriented questions aimed at identifying the unknown.
Typical questions are: "what is the melting point;" "does it dissolve in
sulfuric acid;" "show me the infrared spectrum;" "is it soluble in H20."
There are over a hundred such concepts important in this simulated
laboratory situation, and since each concept has many equivalent forms
drawing upon a vocabulary of hundreds of words, the number of possible
responses is astronomical. How can this be handled?

Although the context is far broader tha~l that of a language drill, it is,
nevertheless, sufficiently limited to be tractable. No attempt is made to
recognize arbitrary student responses such as "cook me some apple pie."
With this quite reasonable restriction, the situation can be handled by
using the -vocabs- command (analogous to -list-) to define a large
vocabulary (with appropriate "synonymization") associated with a list of
-concept- commands (analogous to -answer-) which express the basic
concepts meaningful in the context of this lesson. The following is a
fragment of the -vocabs- command:

vocabs labtest $$ vocabulary must have a name
<is,it,a,does,in,what> $$ ignorable words
(color,red,blue,green) $$ word number 1 and synonyms
(water,H20) $$ word number 2 and synonym
(dissolve,soluble) $$ word number 3 and synonym

111



The TUTOR Language

And here are a couple of the many -concept- commands:

arrow
concept
write
concept
write

1213
what color
It is red.
soluble in water
It's slightly soluble in water.

Consider what TUTOR does with "concept soluble in water".
TUTOR knows that -concept- has a tag consisting of words defined by a
previous -vocabs-. (As usual with such matters, the -vocabs- should be at
the beginning of the lesson.) The first ~ord in the tag is "soluble" which
TUTOR finds is the third very important word in the vocabulary
(discounting the ignorable or optional words "is,it,a," etc.). TUTOR
groups synonyms together so that "dissolve", too, would be considered a
"number 3" vocabulary word. The next word of the tag is "in" which
TUTOR throws away because the -vocabs- command says that the word
is ignorable. The next word is "water", which is in the second set of
important -vocabs- synonyms. The net result is that "concept soluble in
water" is converted to the sequence "3 2".

Now, consider a student in this lesson who types "does it dissolve in
H20". Superficially, this looks quite different from the -concept- tag
"soluble in water". However, TUTOR encounters a -coneept- command
which, unlike -answer-, indicates that the student's response should be
looked up in the defined vocabulary. (In the case of -answer- there is no
one vocabulary set because each -answer- may include various -list-
references and particular words specific to that -answer-.) By a process
identical to the conversion of the author's -concept- tag, TUTOR converts
the student's response into "3 2". This compact form "3 2" does not
match the first "concept what color" (which was converted to "I"), so,
TUTOR proceeds to the next judging command, which is "concept
soluble in water" or rather its converted form "3 2". This matches, so
judging terminates and regular processing begins. The student gets a
reply "It's slightly soluble in water."

112



JUDGING STUDENT RESPONSES

Notice that the first -concept- encountered triggers the transforma-
tion of the student's response into the compact form suitable for looking
through a very long list of concepts. If the -vocabs- contains an entry such
as (five,5,cinco), the student may match this entry with "3+2", just as in
an -answer- statement involving numbers.

You will have to experiment a little with this machinery in order to
learn how best to manage the synonymization in the vocabulary. This
does depend on the context. In an art lesson it would be disastrous to call
red and blue synonyms as was done here, but it makes sense in this
context (where the only concept related to color has to do with "what
color is it", which means essentially the same as "is it red" or "is it
blue").

You will find that the use of words not defined by -vocabs- will result
in a markup indicating which words are undefined (X's will appear under
these words). If your context is such that you need worry only about key
words and don't care if the student asks "does it dissolve superbly in
water", you might precede the first -concept- with a "specs okextra"
which says that extra student words not found in the vocabulary may be
ignored, as though they had been so specified in the -vocabs- tag. In that
case, you need not define any ignorable words with -vocabs-, but you
would write "concept dissolve water", not "concept dissolve in water"
since extra author words are not tolerated. If you don't use "specs
okextra", the student's word "superbly" will be marked (xxxxxxxx).If
the student misspells a vocabulary word, that word will be underlined
such as "salllbk in water."

The fono~ing is an alternative and more detailed version of the heart
of the dialog lesson, which illustrates several points. It is a rather
complex example which brings together many aspects of TUTOR. Note
particularly that the -concept- statements now are listed one after the
other. The variable "unknown" is a number from 1 to 4 (associated with
which compound the student is attempting to identify). The system
variable "anscnt" is set to zero when judging starts (and when a -specs- is
encountered) and it counts the number of -answer-, -wrong-, -ok-, -no-,
and -concept- commands passed through. If the third such command
terminates judging, "anscnt" will have the value 3. If no match is found,
"anscnt" is set to -1.

arrow 1213
wrong what is it
write That is for you to determine!

(Continuedon next page.)

113



The TUTOR Language

specs
goto
writec

concept
concept
concept

unit
goto
*
unit
writec

$$ to clear anscnt again
anscnt>0,unknown,x
vocab,1don't understand your sentence.,
The xxxx words are not in my vocabulary.
what color
soluble in water
boiling point

unknown
unknown - 2,reply1,reply2,reply3,reply4

reply1
anscnt",lt is colorless.,
It is slightly soluble in water.,
The boiling point is 245-24r C.,

The statement "wrong what is it" is necessary because a "concept
what is it" contains only ignorable words and would, therefore, not
distinguish between "what is it" and "does it what", which also contains
only ignorable words. Since -specs- resets "anscnt" to zero, "anscnt" will
have the value 2 if the student's response matches the second -concept-
("soluble in water"). No regular commands follow this -concept-, so
TUTOR goes right to the -specs- marker to execute the regular commands
there. Since "anscnt" is greater than zero, TUTOR does a -goto- to unit
"unknown", where there is a -goto- to unit "reply 1" (assuming we are
working on unknown number 1), which writes "It is slightly soluble in
water" on the student's screen.

This structure makes it very easy to add a fifth unknown compound
to the lesson. The -vocabs- and list of -concept- commands do not have to
be changed, since the basic concepts and vocabulary are pertinent to the
analysis of any compound. All that is necessary is to add "reply5" to the
end of the conditional -goto- in unit "unknown" and to write a unit
"reply5" patterned after unit "reply 1". The lesson revision is completed!

What happens if the student says "it what does"? This will not match
the -wrong- nor any of the -concept- commands, so "anscnt" will be -1.
Therefore, the -goto- just after the -specs- will fall through to the

114



JUDGING STUDENT RESPONSES

following -writec-, which gives one of the two messages dependent on
the system variable "vocab": true if all words are found in vocabulary,
false if some words are not found (these words would be underscored
with xxxx). In this case, the student will get the message "I don't
understand your sentence", whereas if the student says "what is ele-
phant" he will see the xxxx's under "elephant" and get the message "The
xxxx words are not in my vocabulary".

That was a fairly complicated example, but the discussion is justified
by the general usefulness of many of the techniques employed and by the
extraordinary power such a structure yields, both in its sophisticated
handling of student responses and in the ease of expansion to additional
options.

Suppose the -arrow- is in unit "analysis". One way to proceed from
one question to the next would be to place a "next analysis" in this unit.
There is an efficient way to avoid erasing and recreating the display
associated with this unit. Instead of proceeding, let's judge each response
"wrong" so that we stay at this -arrow-. Replace the -specs- command
with these two statements:

specs nookno $$ so "no" doesn't appear
judge wrong

Despite its name, -judge- is a regular command, not a judging command.
It can be used to alter the judgment made by the judging commands. In
this ease, TUTOR first skips over this regular command to get to the
-concept- commands. If one of these commands matches the student
response, TUTOR makes an "ok" judgment, but upon going to the -specs-
marker TUTOR finds a "judge wrong" which overrides the earlier
judgment. TUTOR keeps going, processing regular commands, and
produces a message as we have seen before. The "nookno" specification
prevents a "no" from appearing on the screen and the student simply sees

115



The TUTOR Language

116

our message. But the -arrow- has not been satisfied, so when the student
presses NEXT, TUTOR erases the response and awaits a new response.
Each time, the student gets a reply to his or her experimental question,
and the "wrong" judgment takes us back to the -arrow-.

This is a good way to manage the screen because only a small portion
of the display changes (the surrounding text and figures remain un-
touched). The "next analysis" re-entry to this same main unit would
quickly get tiresome because of the repetitious replotting of the sur-
rounding material.

You should now be able to use -answer-, -wrong-, and -list- in
situations where the vocabulary is small and -concept- and -vocabs-
where the vocabulary is large. You have seen how to use -specs- both to
specify various judging options and to mark a place where post-judging
actions can be ccntralized. You have seen one form of the regular -judge-
command "judge wrong" which overrides an "ok" judgment made by
an -answer- or -concept-.

Another way to get a "wrong" judgment is to use -miscon- ("miscon-
ception") commands instead of -concept- commands. Just as -wrong- is
the opposite of -answer-, -miscon- is the opposite of -concept-.

There is a particularly convenient way to make different concepts
equivalent, including different word orders:

concept dissolve in water
water soluble
drop in water

write It's soluble in H20.

The "continued" -concept- specifies synonymous concepts. If the stu-
dent's response matches any of these three concepts the same message
will be given. Also, "anscnt" will be the same no matter which of these
concepts makes the match.

Use of -vocabs- makes possible the underlining of misspelled vocab-
ulary words (or their acceptance with a "specs okspell"), just as with the
-answer- command. Similarly, "specs noorder" can be used to indicate
that no particular word order is required. There is a -vocab- command
which permits a larger vocabulary (at the price of giving up these spelling
and order capabilities). Just as the multi-word phrase "sodium *chloride"
can be used with the -answer- command, so can such phrases be specified
in a -vocabs- vocabulary.

At times you may be interested mainly in root words, no matter what
endings are attached. The words "walk", "walks", "walked", "walker",
and "walking" can be added to a -vocabs- very simply as "walk/s/edlerl
ing", which saves you some typing effort. If you want all of these except



JUDGING STUDENT RESPONSES

for "walk" itself to be added to the vocabulary, use a double slash after
the root: "walk//s/ed/er/ing".

An even more compact way to define common endings is with
-endings- commands:

endings 0,s,ed,ing
endings 9,er,est

vocabs sample
wil1/0,fu11//9

The use of the "0" and "9" sets of endings causes the vocabulary to
contain these words: will, wills, willed, willing, fuller, and fullest ("full"
itself is missing, due to the double slash). An -endings- set must be
identified by a number from 0 to 9.

Numbering Vocabulary Words

Suppose the student is encouraged to ask questions such as "What is
the capital of Alabama?" or "What is the area of Alaska?" A compact and
powerful way to handle all the states is to specify a vocabulary class
("state") and number the various states. For example:

define
vocabs

st=:v1
inquiry
<What,is,the,of>
(state, Alabama=:1, Alaska=2, Arizona=:3, j
capital, area

concept
writec
concept
writec
write

capital of state,st¢=state
st",M ontgomery,J uneau,Phoen ix
area of state,st¢=state
st-2t51,609t586,400t113,909t .
sq. mi.

If the student asks "What is the capital of Alaska?" the first -concept- is
matched ("capital of state"), and variable "sf' is assigned the value "2",
since "Alaska" was given the value "2" in the vocabulary. Now "sf' can
be used in the following -writec- to tell the student the name of the capital
(Juneau). Similarly, if the student asks "What is the area of Arizona", the
second -concept- is matched, "sf' is assigned the value "3", and the
student is given the reply "113,909 sq. mi."

117



The TUTOR Language

We can go even further. Consider this altered version, in which the
two -concept-s are combined:

define
vocabs

st=v1,prop=v2
inquiry
<What,is,the,of>
(state, Alabama=1, Alaska=2, Arizona=3, )
(property, capital=1, area=2)

concept
writec

property of state, st¢::state,prop<:=property
2{state-1 )+(prop-1)tMontgomeryt51,609
Juneaut586,400tPhoenixt113,909t .....
prop=2t sq. mi.ttwritec

Suppose the student asks about "the area of Alabama". The -concept- is
matched, "st" is assigned the value "I", and "prop" is assigned the value
"2". The expression "2(state-1)+(prop-1)" reduces to "2(0)+ I" or "I",
which picks out "51,609" from the first -writec-. Since "prop" does equal
"2", the second -writec- will write "sq. mi." on the screen beside the area
number. (It would be good practice for you to determine the steps that
would be taken if the student asked about "the capital of Arizona.")

Synonyms, phrases, and endings can be numbered, as in this
-vocabs- entry:

(verbs, walk=1/ed=2, stroll=1/ed=2, went*past=3)

According to this numbering scheme, "walk" and "stroll" are number 1
among the "verbs," "walked" and "strolled" are number 2, and the
phrase "went past" is number 3.

The -judge- Command

We have encountered the regular command -judge- (not a judging
command) and have seen how it can be used to "judge wrong" a
response that had already received an "ok" judgment. The -judge-
command may also be used to "judge ok" a response (disregarding what
a previous judging command may have had to say). The following is a
conditional form for this type of -judge- command:

judge 3a-b,ok,x,wrong

118



JUDGING STUDENT RESPONSES

This form will either make the judgment "ok", leave the current judg-
ment as is (the "x" option), or make the judgment "wrong", depending on
the condition "3a-b".

Here is a useful example:

unit
at
write

arrow
store
write
ok
judge
writec

negative
1214
Give me a
negative number:
1516
num
Cannot evaluate your expression.

$$ terminate judging
num <0,ok,wrong
num<0,Good!,That's positive!

We could just as well have written "judge num<0,x,wrong" since the
original judgment was a universal "ok". (Later we will study -ansv- and
-wrongv- which are also useful in numerical judging.) Note that
"judge ok" and "judge wrong" do not cut off the following com-
mands. In the above example, the -writec- is performed, even though it
follows the -judge- command. The -judge- command here merely alters
the judgment. If you want to cut off the following commands, you can use
"judge okquit" or "judge noquit".

We have been using the -ok- or -no- commands to terminate judging
unconditionally, as in the last example. It is sometimes useful to be able
to switch in the other direction, from the regular state to the judging state.
For example, suppose you want to count the number of attempts the
student makes to satisfy the -arrow-:

attempt¢:0
1518

calc
arrow
ok
calc

~ judge
answer

etc.

attempt¢:attempt+ 1
continue
cat

119



The TUTOR Language

Judging starts just after the -arrow-. The -ok- terminates judging to permit
executing the regular -calc- which increments the "attempt" counter.
Then the regular -judge- command says "continue judging", which
switches TUTOR back into the judging state to examine the -answer- and
other judging commands which follow. If the response is finally judged
"no", the student will respond again, and since judging starts each time
from the -arrow-, the "attempt" counter will record each try. (Actually,
system variable "ntries" automatically counts the number of tries, but
structures similar to the structure illustrated here are often useful.)

Leaving out the -ok- and "judge continue" (which permit counting
each attempt) is a common mistake. If you write:

calc
arrow
calc
answer

attempt¢:0
1518
attempt¢:attempH 1
cat

then "attempt" will stop at one. TUTOR initializes "attempt" to 0, then
encounters the -arrow- and notes its position in the unit. Then, the
following -calc- increments "attempt" to 1, after which the -answer-
judging command terminates this regular processing to await the stu-
dent's response. The student then enters his or her response and TUTOR
starts judging. The first command after the -arrow- is the incrementing
"calc-, which is skipped because it is a regular command and TUTOR is
looking for judging commands. This will happen on each response entry,
so "attempt" never gets larger than one. This explains the importance of
bracketing the -calc- with -ok- and "judge continue".

A related option is "judge rejudge" which is similar to "judge
continue". We have seen that "specs bumpshift" alters the "judging
copy" of the response by knocking out the shift characters. The judging
copy is the version of the response which is examined by the judging com-
mands (such as -answer-). This version may differ from the student's
actual response due to various operations such as "specs bumpshift". It
is also possible to -bump- other characters or to -put- one string of
characters in place of another. All such operations affect the judging copy
only and do not touch the original response, which remains unmodified.
The statement "judge rejudge" replaces the judging copy of the re-
sponse with the original response, thus cancelling the effects of any
previous modifications of the judging copy. The statement also initializes
the system variables associated with judging, including "anscnt". It is,
therefore, much more drastic than "judge continue", which merely

120



JUDGING STUDENT RESPONSES

switches TUTOR to the judging state without affecting the judging copy
or the system variables.

Another exceedingly useful -judge- option is "judge ignore" which
erases the student's response from the screen and permits him or her to
type another response without first having to use NEXT or ERASE.
Unlike "judge wrong", "ok", or "continue", "judge ignore" stops all
processing and waits for new student input. (Even the commands
following a -specs- won't be performed.) On the other hand, TUTOR goes
on to the following commands after processing -judge- with tags "ok",
"wrong", or "continue".

The following routine (which permits the student to move a cursor
on the screen) is a good example of the heightened iilteraction made
possible through the use of "judge ignore". We use the typewriter keys
d,e,w,q,a,z,x, and c which are clustered around a 3 key by 3 key square on
the keyboard, to indicate the eight compass directions for the cursor to
move on the screen. These keys (shown in Fig. 7"2) have small arrows on
them to indicate their common use for moving a cursor.

Fig. 7-2.

121



The TUTOR Language

unit
calc

do
inhibit
arrow
long
specs
do
answer
answer e
answer w
answer q
answer a
answer z
answer x
answer c
ignore
*

cursor
x¢:y¢:250
dx¢:dy¢:10
plot
arrow
3201
1

move
d

$$ initialize cursor position
$$ cursor step size
$$ plot cursor on screen
$$ don't show the arrowhead

$$ come here after judging
$$ -do- is a regular command
$$ east: anscnt= 1 .
$$ northeast 2
$$ north 3
$$ northwest 4
$$ west 5
$$ southwest 6
$$ south 7
$$ southeast 8
$$ equivalent to: {no

judge ignore
unit move
*erase old cursor
mode erase
do plot
mode write
*increment x and y on the basis of "anscnt"
calcs anscnt-2,x¢:x+dx,x+dx,x,x-dx,x-dx,x-dx,

x,x+dx
calcs anscnt-2,y¢:y,y+dy,y+dy,y+dy,y,

y-dy,y-dy,y-dy
plot
ignore

do
~~udge

unit plot
at x,y
write + $$ use "+" for cursor

This routine permits the student to move the cursor rapidly in any
direction on the screen. A letter which matches one of the -answer-
statements will cause the -calcs- statements to update x and yappropriate-
ly to move in one of the eight compass directions. The "long 1" makes it
unnecessary to press NEXT to initiate judging, and the "judge ignore"
after the replotting of the cursor again leaves TUTOR awaiting a new
response. The "judge ignore" greatly simplifies repetitive response

122



JUDGING STUDENT RESPONSES

handling such as that which arises in this example. Normally, such a
cursor-moving routine would be associated with options to perform some
action, such as drawing a line. This would make it possible for the
student to draw figures on the screen.

In addition to the -judge- options discussed above, there is a
"judge exit" which throws away the NEXT or timeup key that had
initated judging. This leaves the student in a state to type another letter
on the end of his or her response. This can be used to achieve special
timing and animation effects.

To summarize, the -judge- command is a regular command used for
controlling various judging aspects. The -ok-, -no-, and -ignore- are
judging commands which somewhat parallel the "judge ok",
"judge no", and "judge ignore" options. The "judge rejudge" and
"judge continue" options make it possible to switch from the regular
state to the judging state (with or without reinitializing the judging copy
of the student response and the system variables associated with judg-
ing). All of these options may appear in a conditional -judge- with "x"
meaning "do nothing":

Judge expr,no ,x,ok,conti nue ,wro ng ,reJudge,x,ig nore ,ok

The subtle difference between "judge wrong" and "judge no" will be
discussed in Chapter 12 in the section on "Student Response Data".
Basically, "judge wrong" is used to indicate an anticipated (specific)
wrong response, whereas "judge no" indicates an unanticipated student
response. Additional -judge- options are "quit", "okquit", and "noquit".

Finding Key Words: The -match- and -storen-
Commands

The -match- command, a judging command, makes it easy to look for
key words in a student's response. The -match- command will not only
find a word in the midst of a sentence, but it will replace the found word
in the judging copy with spaces, to facilitate the further use of additional
judging commands (including -match-) to analyze the remainder of the
response. Here is the form of a -match- statement:

match num,dog,(cat,fel ine ),horse,(pig,hog,swine)
o 1 2 3

Here "num" is a variable which will be set to -1 if none of the listed
\yords appear in the student's response, to 0 if "dog" appears, to 1 if "cat"
or "feline" is present, 2 if "horse" is in the response, etc. In any case,

123



The TUTOR Language

-match- terminates judging, with a "no" judgment if num = -1 or an "ok"
judgment otherwise. What if more than one of the words appear in the
student's response? Suppose the student says:

"horse and dog"

In this case "num" will be set to 2 because in looking at the first student
word we find a match (horse). The judging copy of the response is altered
by replacing "horse" with spaces so that it looks like:

II and dog"

If we were to execute the same -match- again we would get the number 0
corresponding to "dog", and the judging copy would then look like:

II and

Note that -match- always terminates judging, so that a "judge continue"
is needed before another -match- can be executed. Also note that the key
words are pulled out in the order in which they appear in the student's
response, not in the order they appear in the -match- statement.

There are many other ways in which the -match- can be utilized.
First, we can improve greatly on our cursor program:

inhibit
arrow
long

~ match
~ do

judge

arrow
3201
1
num,d,e,w,q,a,z,x,c
nurn,x,move
ignore

124

Unit "move" remains unchanged except to replace (in two places) the
expression "anscnt-2" by the expression "num-I" (and we can delete
the "judge ignore" in unit "move"). We see that -match is useful for
converting a word to a number which represents the word's position in a
list.



JUDGING STUDENT RESPONSES

Another good use of -match-.is in an index:

unit
base
term
at
write

arrow
long
match
calc
jump
write

table

index
1218
Choose a chapter:

a) Introduction
b) Nouns
c) Pronouns
d) Verbs

1822
1
chapter,a,b,c,d
chapter<:=chapter+ 1
chapter ,x,x,i ntro ,u nou n,pron, verb,x
Pick a,b,c, or d.

Notice that we must increment "chapter" by one if we want topic "a" to
be chapter 1, since -match- associates (/)with the first element in its list
(-1 is reserved for the case where no match is found). If no match is
found, there is a "no" judgment. (Again, -base- could come later in the
unit, or at the beginning of the chapters, in which case the BACK key
would still be active for returning to the place from which the index was
accessed.)

These applications barely scratch the surface of -match-s capabili-
ties. Here are some other ideas on how to use -match-:

1) Use -match- to pull out "negation words such as no, not, never,
etc. Then "judge continue" and use -answer- or -concept-
commands to analyze the remainder of the response. You can in
this way separate the basic concept from whether it is negated,
with the negation information held in the -match- variable for
easy use in conditional statements.

2) Use -match- to identify and remove a key-word directive before
processing the rest of the information. This comes up in simulat-
ing computer compilers, in games ("move" or "capture"), etc.

A related command is -storen-, which will find a simple numeric
expression in a sentence, store it in your specified variable, and replace
the expression with spaces. This is particularly useful for pulling out
several numbers. The -store- command will handle much more compli-
cated expressions including variables as well as numbers, but can get
only one number. For example, the student might respond to a question
about graph-plotting coordinates with "32.7,38.3". These two numbers
can be acquired by:

125



The TUTOR Language

arrow
~st~ren

wnte
storen
write
answer
no
write

1215
x
You haven't given me numbers.
y
You only gave me one number.

$$ remainder should be essentially blank

There should just be two numbers.

Like -store-, -storen- will terminate judging on an error condition (in
which no number was found). In the example, the first -storen- removes
and stores one number in "x" and the second -storen- looks for a
remaining number to store in "y". The first -storen- will terminate
judging if there are no numbers. The second -storen- will terminate
judging if there is no number remaining after one has been removed. The
blank -answer- will be matched if only punctuation, such as commas,
remains after the actions of the two -storen-s.

Numerical and Algebraic Judging: -ansv- and -wrongv-

We have already had some experience in handling numerical and
algebraic responses by using -store- to evaluate numerically the student's
expression. The -ansv- (for "answer is variable") and -wrongv- judging
commands evaluate the student's expression in the same way as -store-
and also perform a comparison with a specified value.

The -ansv- command is useful in association with -store-. If you ask
the student for a chapter number or a launch velocity of a moon rocket, it
is convenient to use -ansv- to check whether his number is within the
range you allow. For example:

arrow
store

~ansv
l::J.S no

write

126

1314
chapter
5,4 $$ match if in the range 5±4 (1 to 9)

Choose a chapter from 1 to 9.



JUDGING STUDENT RESPONSES

Another common use is in arithmetic drills:

define
unit
next
randu
randu
at
write
arrow
ansv
write
wrongv
write
wrongv
write
wrongv
write
no
write

b::::::v1,c=v2
drill
drill
b,10
c,10
1513
What is «s,b» times «s,c»?
1715
bxc
Right!
b+c
You added.
bxc,1 $$ plus or minus 1
You are off by 1.
bxc,20% $$ plus or minus 20%
You are fairly close.

$$ multiplication drill

$$ pick an integer from 1 to 10
$$ pick another integer

$$ no tolerance

You are way off!

The drill as written will run forever. It could be modified to stop after 5
straight correct responses, or after some other criterion has been met.
Note that the response "be" or "bxc is judged "no" (unless you define
these variables in the "student" set of defines). Also note that the student
need not do any mental multiplication for this drill (since if the student is
asked to multiply 7 times 9, he or she could respond with 7x9 which
matches the -ansv-).

Let's make a change to require some multiplication on the part of the
student:

ansv
judge
writec
wrongv

bxc
opcnt=0,ok,wrong
opcnt::::::0,Right!,Multiply!
b+c

127



The TUTOR Language

Do not define "opcnt"! It is a system variable which counts the number of
operations in the student's response. If the student says "7(5+8+3)/2"
then "opcnt" will be 4 because the student's expression contains:

1) an (implied) multiplication (7 times a parenthesized expression);
2) two additions; and
3) a division.

In this drill we want the student to give the result with no operations, so
"opcnt" should be zero ("specs noops,novars" can also be used to
prevent the student from using operations or variables in his or her
response).

Recall that the first -concept- command encountered will trigger the
reduction of the student's response to a compact form, through the.use of
the -vocabs-. This compact form can be compared rapidly to all succeed-
ing -concept- commands. Similarly, the first -store- or -ansv- or -wrongv-
causes TUTOR to "compile" the student's expression into a form which
can be quickly evaluated when another of these commands is encoun-
tered. It is during the compilation process that "opcnt" is set. Just as the
-vocabs- list tells TUTOR how to interpret the student's words, so the
"define student" set of names tells TUTOR how to treat names encoun-
tered in the compilation of a student's algebraic response. So, there are
many parallels between -ansv- and "define student" on the one hand
and -concept- and -vocabs- on the other.

Let's look at an algebraic example, as opposed to the numerical
examples we have treated:

define

unit
at
write

randu
calc
arrow
ansv
goto
goto
wrongv
write
no
goto
*

128

student
x=v1
simplify
1215
Simplify the expression

3x + 7 + 2x - 5
$$ pick a fraction between 0 and 1
$$ change to 1 to 2 range

x
x¢;x+1
1418
5x+2$$ 0 tolerance
varcnt--1,toofew,x,manyvar $$ how many x's
opcnt-2,toofew,x,manyop $$ how many operations
5x+12
You should subtract 5, not add it.

formok,x,tellerr



unit
write
judge
*
unit
write
judge
*
unit
write
judge

JUDGING STUDENT RESPONSES

toofew
Your expression is not sufficiently general.
wrong

manyvar
"x" should appear only once.
wrong

manyop
Not simplest form.
wrong

Unit "tellcrr" would contain a -writec- involving the systcm variable
"form ok" to tell the student precisely why his or her expression could not
be evaluated. There could be several -wrongv- statements in the example
to check for specific errors. The system variable "varcnt" during compila-
tion of the student's expression counts the number of references to
variables. For example, "x+3x+x+2" is numerically equivalent to
(5x+2), so that this response will match the -ansv-, but "varcnt" will be 3
because "x" is mentioned three times. If both x and y were defined, the
expression "2x+y+4x" would yield a "varcnt" of 3 (two x's and one y)
and an "opcnt" of 4 (two implied multiplications and two additions).

In this way "opcnt" and "varcnt" may be used to distinguish among
equivalent algebraic responses which differ only in form. Roughly
speaking, what is usually called "simplest algebraic form" often corre-
sponds to the smallest possible values of "opcnt" and "varcnt".

There are some minor technical points in the preceding example. For
example, -randu- with only one argument produces a fraction between 0
and 1. If this should happen to be very close to 0 then "x" would be
unimportant in the expression (5x+2), so it seems better to add one and
give "x" a value between 1 and 2, which is comparahle to the other
quantities in the expression. We could have used the two-argument form
(e.g., "randu x,8") to pick an integer value for "x". However suppose
TUTOR chooses the integer 2 for "x". In this case, a student who
happens to give "12" as his or her response will match the -ansv- by
accident since 5x+2 :::;;5x2+2 :::;;10+2 :::;;12. On the other hand, with
TUTOR picking a fraction, the student would have to type something
like "8.93172462173" to accidentally match the -ansv-. This just won't
happen. You would have to type different numbers 24 hours a day for
hundreds of years to match accidentally. If you want even more security
against an accidental match, just change the value of "x" and check again.
In skeleton form, here is a way to do it:

129



The TUTOR Language

ansv
goto
goto
wrongv

unit
randu
calc
judge
ansv

5x+2
varcnt-1,toofew,x,manyvar
opcnt - 2,toofew ,checku p,ma nyop
5x+12

checkup
x $$ new value of x
x,*,x+1
continue
5x+2 $$ try again

A further check is that we require exactly one "x" and exactly two
operations.

There is a way to give detailed feedback to the student in case his or
her expression is not algebraically equivalent to the desired expression
(5x+2). Suppose the student's incorrect expression is "6x+2", and that
you have done a -storea- to save the response and a -store- to evaluate it
for some integer value of x. Then ask the student this question:

write What is the numerical value of
3(<(s,x» )+7 +2(<(s,x» )-5?

If x is 4, this will appear on the screen as:

What is the numerical value of
3(4)+7+2(4)-5?

Many students can handle a numerical example even if an algebraic
example gives them trouble, so this student is likely to reply correctly,
either with or without some help, that this expression gives 22. You can
then reply to the student with this statement (assuming the student's
alphanumeric response is in "string" and its value is in "result"):

130



JUDGING STUDENT RESPONSES

write But your expression, «a,string,count»,
gives «s,result» in this case.

If the student's response was "6x+2", with a value of 26 (if x is 4), this
appears on the screen as:

But your expression, 6x+2,
gives 26 in this case.

The student now sees that his or her expression "6x+2" does not give
the value 22 which it should in the case where x is 4. You have fed back
the student's own expression, evaluated for a particular case where the
student can see there is a conflict. (In other words, anything the student
says may be used against him or her.) Here is an opportunity for the
student to learn, by example, a useful technique in simplifying compli-
cated expressions: try some numerical cases for which you know the
results and see whether they agrec with the simplified expression.

It is possible to judge equations as well as expressions. Suppose we
ask the student to simplify the equation "4x+3=x+ 12y-5". A suitable
response might be "12y=3x+8" or "x=(12y-8)/3". Every time the
student enters a response, let TUTOR pick a random value for the in-
dependent variable x, and calculate the corresponding value of the
dependent variable y: y<::o(3x+8)/12.Consequently, any correct equation
will be true (with value -1), and an incorrect equation will be false (with
value 0). Here is a unit embodying these concepts:

x
x<::ox+1
y<::o(3x+8)/12
continue
-1
ident
o

write That is false.
(Continued on the next page.)

define
unit
at
write

arrow
ok
randu
calc

judge
ansv
do
wrongv

student,x=v1,y=v2
equate
1215
Simplify the equation

4x+3=x+12y-5
1718

$$ random x on each judging

$$ y depends on x

$$ logical true

$$ logical false

131



The TUTOR Language

no
write
*

$$ anything else
Give me an equation!

unit
calc
judge
wrongv
write
ok
judge
writec

ident
y¢:.3.72y $$ change yarbitrarily
continue
-1 $$ should not now be true
That is an identity!

varcnt>2,wrong,ok
varcnt>2,Not simplified.,Fine.

If the student writes "3+4", this expression has the numerical value
7, so the reply is "Give me an equation!"

If the student writes "3=4", this expression has the numerical value
0, since it is logically false, and the reply is "That is false."

If the student writes "32+5=17--3", which is equivalent to 14=14,
TUTOR replies "That is an identity!" The student's response is true (14
does equal 14), so that this true relationship has the value -1 which
matches the -ansv- statement. A "do ident" follows, where the depen-
dent variable y is changed so that y no longer bears the correct relation-
ship to x. If the student's response had been a correct simplification of the
given equation, his or her expression would no longer be true (-1), since
y is no longer the correct function of x. In the case of "32+5= 17-3",
however, changing y has no effect and the value is still --1, which
matches the -wrongv- statement in unit "ident". The student gets the
message "That is an identity!"

Only if the student enters an equation which is not an identity will
he or she get an "ok" judgment. Note the check on "varcnt". There could
also be a check on "opcnt".

To summarize, -ansv- and -wrongv- are extremely powerful com-
mands for algebraic or numeric responses, particularly in association
with variables defined in the "define student" set. The system variables
"opcnt" and "varcnt" give you additional information about the form of
the response.

CAUTION: Since TUTOR performs multiplications before divi-
sions (unless parentheses intervene), a student response of "1/2x" is taken
to mean "I!(2x)", whereas the student might have in mind "(1/2)x". It is
important to warn your students of this convention at the beginning of a
lesson which uses algebraic judging. Scientific journals and most text-
books follow this same convention, but many students are unaware of
this. Usually, printed materials use the forms fort x or i- .These
forms avoid the ambiguities that arise from the slash (/) or quotient sign

132



JUDGING STUDENT RESPONSES

(-;-)used on a single typewritten line. It is hoped that eventually TUTOR
will make it easy for students to type fractions with the horizontal bar
rather than with the slash or quotient sign. Until then, it is important to
point out this convention to your students.

Handling Scientific Units: -ansu-, -wrongu-, and -storeu-

Suppose you want to ask the student for the density of mercury. A
correct answer would be "13.6 grams/cm3", but there are many equiva-
lent ways to write the same thing. For example, the student might write
"13.6x 10-3kg/ (.01 meter)3" or "13.6 gm-cm-3", and both of these
responses are equivalent to "13.6 grams/cm3". TUTOR provides a
convenient way not only to judge such responses appropriately, but to
give the student specific feedback if he or she makes specific errors (such
as omitting the units or giving the right units but the wrong number).

The TUTOR scheme is based on the judging performed by human
instructors when grading exam questions involving numbers and units.
The instructor makes two separate checks, one for the numerical value
and the other for the dimensionality of the units. The dimensionality of
density is (mass)! (length)--3, and it is the powers (1,-3) that we are
interested in as well as the number 13.6. All of the equivalent correct
responses listed above have a numerical value of 13.6 (in the gram-em
system of units) and a mass-length dimensionality of (1,-3). The -storeu-
command (-store- with units) can be used to get the numerical part and
the dimensionality if we define the units appropriately:

unit
at
write

define student $$ units will be used by student
~ units,gm,cm $$ can define up to 10 basic units
~ gram=gm,grams=gm,kg=1000gm $$ synonyms

meter=100cm,cc=cm3

define mine,student $$ include student define set
num=v1,dimens(n)=v(1 +n)$$ see "Arrays", Chapter 10
dense
1215
What is the density of mercury?
(Include units!)
1618
num,dimens(1 )
Cannot evaluate.

arrow
r~sto.reu
~ write

no
(Continued on the next page.)

133



The TUTOR language

goto
goto
goto
judge
write

num~ 13.6,badnum,x
dimens(1);:e 1,badmass,x
dimens(2)~ -3,badleng,x
ok
Good!

We will go to a unit "badnum", "badmass", or "badleng" (not shown
here) if there is something wrong with number, mass, or length. The
-storeu- command has two variables in its tag. The first variable will get
the numerical part of the student's response, and the second (dimens(1) in
this case) is the starting point for receiving the dimensional information.
Here are some examples of what will end up in num, dimens(1), and
dimens(2) for various student responses:

student response num dimens(1 ) dimens (2)
13.6 grams/cm3 13.6 1 -3
13.6 13.6 0 0
13.6 em-gm2 13.6 2 1
13.6 kg/10em 1360 1 -1

Notice (in the third example) that a minus sign preceding a unit name is
taken as a dash meaning multiplication, not subtraction. Note in the last
example that "kg" brings in a factor of 1000 relative to the basic unit
(gm). Note also that, as usual, TUTOR does multiplication before doing
division so that the "10 em" is all in the denominator, with the result that
we have (length)-l. Similarly, "1/2 kg" will be taken to mean 1/(2 kg), not
(1/2) kg. As mentioned earlier, it is best to point out this matter to the
student at the beginning of the lesson.

Like -store-, the -storeu- judging command will flip TUTOR to the
regular state (with a "no" judgment) if it cannot evaluate the student's
response. The system variable "form ok" can be used in a -writec- to tell
the student why his or her response can't be evaluated. One example
characteristic of responses involving units is "5 grams + 3 em", which is
absurd. You cannot add masses and lengths, and -storeu- will give up. On
the other hand, the student can say "65 cm + 2 meter" and -storeu- will
set num to 265, dimens(1) to 0 (no mass), and dimens(2) to 1. As another
example, "eos(3em)" is rejected, but "cos(3cm/meter)" is accepted. The
argument of most functions must be dimensionless. (Exceptions are
"abs" and "sqrt".)

A related difficulty faces students unless they are specifically warned
about "3+6 em" being rejected by -storeu- (although it looks reasonable
in context to the human eye). As far as -storeu- is concerned, however, the
student is trying to add 3 "nothings" to 6 em, and the units do not have

134



JUDGING STUDENT RESPONSES

the same dimensionality. For -storeu- this is as improper as "3 kg + 6
cm". Unfortunately, until -storeu- and TUTOR become more sophisticat-
ed, it will be necessary to give explicit instructions to the students that:

1) Multiplications are done before divisions (unless parentheses
intervene), so that 1/2 kg does not mean (1/2) kg.

2) Responses such as "3 + 6cm" must be written rather as
"(3+6)cm".

Note that these rules also apply in scientific journals and almost all
textbooks, but your students may not be consciously aware of these
standard rules. Given only these standard conventions, -storeu- will
correctly handle an enormous variety of student responses.

While -storeu- can be uscd to get the number and dimensionality, the
-ansu- and -wrongu- commands are primarily used to check for specific
cases. Let us modify our sample unit to use these commands, which are
like -ansv- and -wrongv- except for checking for correct units:

arrow
storeu
write

r::;g--o an~u
write
wrongu
write
wrongu
write
wrongv
write
no
writec

1618
num,dimens(1 )
Cannot evaluate!
13.6 gm/cm3,.1
Good!
13.6,.1
Right number, but give the units!
(num)gm/cm3,.1
Right dimensionality, but wrong number!
13.6,.1
Right number but wrong dimensionality.

dimens(2)=-3,Length ok.,Length incorrect.

The -anSlJ-will make a match only if the dimensionality is correct and the
-wrongu- checks for 13.6 (mass).ll(length)lI, that is, no units given at all.
The second -wrongu- looks for a number equal to (num), and finds it
since it is the number the student gave (as determined by -storeu-).
Therefore, this-wrongu- will match if the number is not 13.6 but the
dimensionality is correct. The -wrongv-, unlike -wrongu-, is only con-
cerned with the numerical element rather than the dimensionality. It is
used here to check for responses such as "13.6 em".

135



The TUTOR language

The -exact- and -exactc- Commands

It is occasionally useful (in special cases) to use a command less
powerful than -answer- to judge a response. Suppose you are teaching the
precise format required on some business form, and you want the student
to type "A B C" exactly, with three spaces between the letters. A
match to "answer ABC" would occur no matter how the student
separates the letters. One space, four spaces, a comma or a semicolon (any
of these punctuations) are permissible separators as far as -answer- is
concerned. Normally, this flexibility is beneficial to students because it
keeps them from getting too hung up on petty details. If, howeyer, it is
the details that are important in a particular response, use an -exact-
command. In the present case, the statement "exact ABC" will be
matched only if the student types exactly that string of characters: A,
space, space, space, B, space, space, space, C.

The -answer- command does not permit punctuation marks in its tag,
so that a response such as "a:b" must be judged with an -exact- command
if the colon is important. While punctuation marks cannot appear in the
tag of the -answer- command, the student can use them in a response. The
-answer- command will treat all punctuation marks that the student uses
as being equivalent to spaces. (As an alternative, the -change- command
can be used to redefine the colon to be considered a "word" and not just
as a punctuation mark, in which case the -answer- command can be used.)

It should be emphasized that it is easy to misuse the -exact-
command. The student should normally be given considerable latitude in
the form of his or her response, such as is permitted by the -answer-,
-concept-, and -ansv- commands. The -exact- command should be used
sparingly, and only for short responses. It may be important for the
student to know the exact format of something that is as long as:

3 No.6 screws/516-213-86xq-4: New Orleans

In this case, it would certainly be preferable to have the student pick this
correct form out of a displayed set of samples than to ask him or her to
type it exactly. (Then, all the student would need to say is that item
number 3 is the correct form.)

There is also a conditional form of the -exact- command, -exactc-.
(The conditional -answer- command is called -answerc-.) In the case of
the conditional form of the -do- command, the presence of commas tells
TUTOR that the statement is conditional, so a -doc- command name is
not needed. But -write-, -answer-, and -exact- may have tags which

136



JUDGING STUDENT RESPONSES

include commas, so the conditional command names must be different
(-writec-, -answerc-, -exactc-).

The -answerc- Command: A Language Drill

The conditional -answer- command, -answerc-, may be used to create
vocabulary or translation drills. Here is a sample unit which will give the
student practice with Esperanto numbers:

unit
next
at
write
randu
at
writec
arrow
answerc

espo
espo
1812
Give the Esperanto for
item,S
2015
item -2,one,two ,th ree ,fou r,five
2113
item-2;unu ;du ;tri ;kvar;kvin

$$ pick an integer from 1 to 5

$$ note semicolons

Each item in the -answerc- can be as complicated as the tag of an -answer-
command. For example, "answerc selectt <it,is,a> (right,rt) triangle,
<it,is,a> three*sided (polygon,figure) H circle,ring" will accept either "rt
triangle" or "three sided polygon" if "select" is -1, will accept nothing if
"select" is zero, and will accept "circle" or "ring" if "select" is one or
more. Note that items must be separated by a semicolon or by the -writec-
delimiter. There is also a conditional -wrong- command, -wrongc-.

You might write yourself a similar unit to drill yourself on historical
dates, capitals of nations, etc. The drill just shown has three defects: (1) it
never ends; (2) you may see the same item two or three times in a row; and
(3) no help is available if you get stuck. Let's revise the sample unit to
have the following characteristics: it should present the five items in a
random order but without repeating any item; any items missed will then
be presented again; the student may press HELP to get the correct
answer.

We will be using a random sequence of non-repeating item numbers
such as:

4,2,1,5,3.

137



The TUTOR Language

This is called a "permutation" of the five integers. The following
sequence is another permutation:

2,5,3,1,4.

You can see that there is a large number (120) of different permutations of
five integers. Correspondingly, there is a large number of different
permutation sequences for presenting the drill to the student. Such
sequences of non-repeating integers are quite different from the sequenc-
es we get from repeated execution of Our "randu item,5", which
produces sequences (with some integers repeating and some not showing
up for a long time) such as:

3,2,4,4,1 ,5,1 ,2,4,3,5,5,2,etc.

We need some way of asking TUTOR to produce a permutation for
us, rather than the kind of sequence produced by -randu-. This is done by
telling TUTOR to set up a permutation of 5 integers ("setperm 5") from
which to draw integers ("randp item") until the sequence is finished
(indicated by "item" getting a value of zero). The -setperm- command
actually sets up two copies of the permutation, and the "remove item"
statement can be used to remove an integer from the second copy. (The
-randp- draws integers from the first copy.) If we -remove- only those
integers corresponding to items correctly answered on the first try, the
second copy will contain only the difficult items (after completing the
first pass over the five items). At this time, we can use -modperm- (which
has no tag) to modify the first copy by shoving the second copy into the
first copy. Having replenished the first copy with the difficult items we
can use -randp- to choose these again.

Here is a form of the drill incorporating these ideas:

unit
I~~etperm
~ Jump

*
unit
calc

r:::::s=~andp
~ Jump
r:::::s= modperm
~ randp

jump

138

begin
5
choose

$$ set up two copies of a permutation

choose
attempt¢:0
item
item>0,espo,x

$$ initialize number of attempts
$$ pick an integer
$$ jump if first copy not empty
$$ use second copy if first copy empty

item
item>0,espo,x $$ jump if second copy not empty



at
write

end
*
unit
next
help
at
write
at
writec
arrow
answerc
goto

!~remove
~ no

calc
*
unit
calc
at
writec
end

JUDGING STUDENT RESPONSES

2115
Congratulations!
You finished the drill.
lesson $$ end the lesson

espo
choose
esphelp
1812
Give the Esperanto for
2015
item -2,one, two ,th ree, fo ur,five
2113
item-2;u nu ;du ;tri; kvar;kvin
attempt>0,q,x
item $$ remove item if correct on first attempt

attempt¢=attempt+ 1

esphelp
attempt¢=attempt+ 1 $$ count HELP as an attempt
1613
item -2,u nu,d U,tri ,kva r,kvi n

We want to remove an item only if the student gets it right on the first
try, which means "attempt" should be zero. The "goto attempt>0,q,x"
means "goto a fictitious, empty unit 'q' if attempt is greater than 0, else
fall through." If we fall through, we remove the item ("remove item").
We increment "attempt" on each try (and also when help is requested) so
that if the student has to see the answer, the item is not removed and will
be seen again. Note that the student is required to type the correct
response and cannot see this answer while he or she types, which gives
the student additional practice on the difficult items.

Summary

This chapter has demonstrated an array of techniques for judging
vurious types of student responses. There are -answer- and -wrong- (aided
by -list-) for handling sentences composed from a relatively small
vocabulary of words. There are -concept- and -miscon- (supported by
-vocabs-) to handle dialogs involving a large vocabulary. The -match- and

139



The TUTOR Language

-storen- commands can be used to pull out pieces of a student's response.
The -storea- and -store- commands allow the student to specify alphanu-
meric or numeric parameters. There are -ansv-, -wrongv-, -ansu-, and
-wrongu-, aided by "define student", for judging numerical and alge-
braic responses. The -exact- and -exactc- commands can be used when it
is important that the response take a particular precise form. The -specs-
command permits you to exercise various options associated with these
commands and also provides a convenient marker of centralized post-
judging processing. The regular -judge- command offers additional
control over the judging process.

The construction of randomized drills using -setperm-, -randp-,
-remove-, and -modperm- (and featuring the conditional commands
-answerc- and -wrongc-) was also illustrated in this chapter.

It is hoped that you will read over this chapter occasionally in the
course of writing curriculum materials. The TUTOR judging capabilities
are extremely rich (because of the wide range of student responses that
must be handled in order for lesson material to be successful). Reread
appropriate sections of this chapter at a later time, when you need the
details. For now it is sufficient to know what is available, and roughly in
what form. You may find it helpful to think of the judging commands
introduced in this chapter as making up two major classes: those used for
handling words and sentences (-answer-, -answerc-, -list-, -concept-,
-vocabs-, -match-, -storen-, -storea-, and -exact-), and those used for
handling numbers and algebraic expressions (-ansv-, -define-, -ansu-,
-store-, and -storeu-).

140



More About Judging 8

The previous chapter described the array of major response-judging
features of the TUTOR language. We can now discuss the judging
process in more detail, after which we will see how to treat responses that
don't quite fit the categories of the previous chapter.

Stages in Processing the -arrow- Command

The following is a summary of the several stages of processing
involved when there is an -arrow- command.

Stage 1 The -arrow- command is executed. The arrow is displayed
on the screen, and a marker is set to remember the unit and
location within the unit of this -arrow- command. Regular
processing continues until a judging command is encoun-
tered, at which point there is a wait while the student types
a response.

Stage 2 The student presses NEXT or otherwise completes his or
her response. TUTOR uses its -arrow- marker to start
judging at the statement following the -arrow- command.
Only judging commands are executed; all regular com-
mands are skipped. Executibn of a -specs- command sets a
-specs- marker to remember the unit and location within
the unit of this -specs- command.

141



The TUTOR Language

142

Stage 3 Some judging command terminates judging and succes-
sive regular commands are executed until a judging com-
mand is encountered, which ends this regular processing,
even if we are several levels deep in -do-s. There is no
"undoing". An -arrow- or -endarrow- will also halt this
regular processing without permitting "undoing". (If no
judging command terminates the judging phase, the end of
a unit with no more "undoing" to do; an -endarrow-; or
another -arrow- will end Stage 3 and make a "no" judg-
ment.)

Stage 4 If the -specs- marker has been set, regular processing
begins at the statement following the last -specs- command
encountered. (The -specs- marker is cleared.) This process-
ing terminates in the same way as the regular processing of
Stage 3. If the judgment is not "ok," the -arrow- is not
satisfied. The student must erase part or all of the response
and enter a different response, which initiates Stage 2
again.

Stage 5 The search state is initiated if there is an "ok" judgment.
TUTOR again uses the -arrow- marker to start processing at
the statement following the -arrow- command, this time in
a search for another ~arrow-. Only -join-s are executed, all
other commands (regular or judging) are skipped during
this search state. If an -arrow- command is encountered,
TUTOR begins Stage 1 for this additional -arrow-. If an
-endarrow- command is encountered, the search state ends
and regular commands are processed. If neither -arrow- nor
-endarrow- is encountered, the student can press NEXT to
go on to the next main unit, having satisfied all the -arrow-so

This all sounds rather complicated, written out in this way, but in most
practical cases this structure turns out to be quite natural and reasonable.
It is, nevertheless, useful to look at some unusual cases to further clarify
the various processing stages.

Repeated Execution of -join-

The following is an example of the repeated execution of a -join- in
regular, judging, and search states (remember that -join- is similar to
-do-):

unit multy
calc i<:=0



MORE ABOUT JUDGING

arrow
~join
~JS endarrow

at
show
*

1514
i¢:i+1,ansdog

2514

unit
answer
write

ansdog
dog
Bowwow!

The conditional -join- has only one unit listed, so we will always join unit
"ansdog" no matter what value the expression (i¢:i+ 1) has. Upon first
entering unit "multy", we do the -calc-, the -arrow-, and the -join-, all in
the regular state. This terminates at the -answer- command to await a
student response. Note that i is now 1, due to the assignment (i¢:i+ 1)
contained in the conditional -join-. Suppose the student types "cat" and
presses NEXT. TUTOR starts at the statement following the -arrow- and
executes the -join- in the judging state (incrementing 1 to 2 in the
process). No match is found for "cat", so the student must give another
response. Suppose the student now enters "dog". TUTOH again starts
judging just after the -arrow- and again executes the -join- (thus incre-
menting i to 3). This time there is a match to "answer dog" which
changes the state from judging to regular. The "write Bowwow!" is
executed, and the end of unit "ansdog" causes TUTOR to "undo" back
into unit "multy", where the -endarrow- signals the end.of the statements
associated with the -arrow-. Since we received an "ok" judgment, we are
ready to search for any other -arrow-s that might be in unit "multy". We
return to the -arrow- one last time, this time in the search state. The -join-
is executed to see whether ther~ is an -arrow- command in unit "ansdog",
with the incidental result that i gets incremented to 4. No -arrow- is found
in unit "ansdog" and we "undo" into the -endarrow- command, which
changes us from search state to regular state. The -at- and -show- are
executed and we get "4" on our screen, due to the quadruple execution of
the -join-.

Aside from illustrating some consequences of the processing rules,
this example should emphasize that using the assignment symbol (¢:)in a
conditional-join- may have unexpected results. Note that -join- is the only
command with these properties, due to the fact that it is the only
command executed in regular, judging, and search states. It is important
that -join- be universally executed in this way so that you can join judging
commands in the judging state and even -arrow- commands in the search
state, not just regular commands in the regular state.

143



The TUTOR Language

Judging Commands Terminate Regular State

The rule that a judging command terminates the processing of
regular commands is an important and general rule. We have seen that
this must be true upon first encountering an -arrow- (the first judging
command after the -arrow- makes TUTOR wait for a student response,
since that judging command needs a response to work on). Let's see
another instance of the rule:

arrow
answer
write
wrong
write
wrong

1518
dog
Bowwow
cat
Meow
horse

If the student says "dog", he or she gets a reply "Bowwow" and regular
processing stops at the "wrong cat" because -wrong-, a judging com-
mand, terminates the regular state. Similarly, if the student response is
"cat", the statement "write Meow" is the only regular statement which
is executed. The judging commands delimit those regular commands
associated with a match of a particular judging command. This delimit-
ing effect is achieved because:

1) Regular commands are skipped in the judging state; and
2) The processing of regular commands ends whenever a judging

command is encountered.
Now let's consider a slightly modified sequence:

arrow
~join
L.::38 write

wrong

144

1518
dogcat
Meow
horse



MORE ABOUT JUDGING

unit
answer
write
wrong

dogcat
dog
Bowwow
cat

Supposedly, the "join dogcat" will act as though the statements of unit
"dogcat" were inserted where the -join- is, which should make this
modified version equivalent to the earlier version. Indeed, the rule that a
judging command terminates the processing of regular commands does
make the two versions equivalent, as we will show. Remember, in this
discussion, that -join- is the same as -do- except for the universal nature of
-join-.

Suppose the student types "dog". We start just after the -arrow-, in
the judging state. The -join- is executed and we find a matching
"answer dog" which ends judging and puts us in the regular state. The
"write Bowwow" is executed. The statement "wrong cat" is encoun-
tered next. The judging command -wrong- stops the processing of
regular commands and also prevents coming out of the joined unit. Even
though we are one level deep in -join-s, TUTOR will not "unjoin" and the
"write Meow" which follows the "join dogcat" will not be executed.
What will happen is just what happens in the earlier version: we have an
"ok" judgment which causes the search state to be initiated at the -arrow-
(there was no -specs-). Thus, the two versions operate in identical
manners because the -join- acts like a text insertion. Note that a response
of "cat" will get a reply "Meow" because there is no judging command
following the "wrong cat" (and a normal "undo" is performed at the
end of unit "dogcat").

This last example illustrates the importance of the rule "a judging
command terminates the regular state." It is this rule which insures that
-join- (or -do-) will act like a text insertion.

In the discussion of the -goto- command in Chapter 6, we saw that a
-goto- in a done unit destroys the strict text insertion character of the -do-.
This is true in the present context as well. Suppose we insert a -goto- in
unit "dogcat" (any -goto- will do, we'll use a "goto q"):

unit
answer
write

r::..~goto
~ wrong

dogcat
dog
Bowwow
q
cat

The student enters "dog" and we do unit "dogcat" where the match to
"answer dog" flips us from the judging to the regular state. The regular

145



The TUTOR Language

146

commands -write- and -goto- are executed. (Note that -goto-, like -do-, is
only regular whereas -join- is universal, being executed not only in
regular but in judging and search states.) The execution of the -goto-
prevents TUTOR from encountering the "wrong cat" which previously
terminated the regular state. We have run out of things to do in unit
"dogcat" and are one level deep in -do-soTUTOR, therefore, "undoes"
and executes the "write Meow" which follows the "join dogcat"! The
student will see "BowwowMeow" on the screen. If, on the other hand,
we replace the "join dogcat" with the statements contained in unit
"dogcat" we would have:

arrow
answer
write

~goto
L,.....(S wrong

write
wrong

1518
dog
Bowwow
q
cat
Meow
horse

and a response of "dog" would merely cause "Bowwow" to appear on the
screen, not "BowwowMeow".

We have again seen that a -goto- in a done unit can cause the -join-
operation to behave differently from a text insertion. We get different
effects depending on whether we -join- such a unit or put that unit's
statements in place of the -join- statement. You can avoid confusion by
not using -goto- commands in "done" or "joined" units which contain
-arrow- commands or judging commands.

The -goto- is a Regular Command

Since the -goto- command is a regular command, it is skipped in the
judging and search states. Here is a sequenee of commands which
illustrates the fact that the -goto- is skipped in the judging state:



arrow

rsg"'2oto

unit
answer
write
wrong

MORE ABOUT JUDGING

1612
dogcat

dogcat
dog
Bowwow
cat

When the -arrow- is first encountered, an arrow is displayed on the screen
at 1612. TUTOR continues in the regular state and executes the -goto-.
The -answer- in unit "dogcat" ends this regular processing to await the
student's response. Suppose the student types "dog" and presses NEXT.
TUTOR starts judging just after the -arrow-, skips the regular -goto-
command, and finds no judging commands at all. The student's response
gets a default "no" judgment. The -goto- should be replaced by a -join- so
that unit "dogcat" will be attached in the judging state.

Similarly, the following is an erroneous sequence which illustrates
the fact that the -goto- command is skipped in the search state:

arrow
specs
answer

~goto
1..:JS. wrong

*
unit
arrow
answer

1612
bumpshift
dog
another
cat

another
2514
wolf

The student responds to the first -arrow- with "dog" and matches the
"answer dog", which switches the processing from the judging state to
the regular state. The -goto- is executed, and in unit "another" we
encounter an -arrow- command. This -arrow- command terminates the
regular processing just as a judging command would. The -specs- marker
was set, so we will now execute any regular commands following the
-specs- command (there are none in this example). Since the student's
response was" ok", the search state is now initiated. TUTOR starts at the
"arrow 1612" looking for another -arrow- command. The -specs-,
-answer-, -goto-, and -wrong- are skipped in the search state, and we come
to the end of the unit without finding an -arrow-. Thus the -goto- did not

147



The TUTOR Language

join response

148

succeed in attaching a second -arrow-. If the -goto- is replaced by a -join-,
the "wrong cat" will be associated with the second -arrow- (2514). This
is due to the text insertion nature of the -join-, which interposes the
statements of unit "another" between the "answer dog" and the
"wrong cat". One correct way to write this sequence is shown below:

arrow
specs
answer
wrong
endarrow
goto
*

1612
bumpshift
dog
cat

another $$ or "do another"

unit
arrow
answer

another
2514
wolf

The -goto- or -do- placed after the -endarrow- will not cause any problems
because the search state has been completed, and the -endarrow- flips us
from the search state to the regular state.

Considerations of this kind suggest that some care must be exercised
when using -join- or -do- to attach units containing -arrow- commands.
To avoid unpredictable results follow these two rules:

1) A unit attached by -join- or -do- which contains one or more
-arrow- commands must end with an -endarrow- command. This
insures that the unit will end and "undo" in the regular state. (It
is permissible to have regular commands following the
-endarrow-.)

2) The attached unit containing one or more -arrow- commands
must not contain any -goto- commands. (A -goto- can make
TUTOR fail to see the -endarrow- or a judging command so that

" d" )a premature un 0 occurs.
If these two rules are followed, the -join- or -do- will act precisely as
though you had inserted the statements of the attached unit where the
-join- or -do- was. Here are examples of good and bad forms:

B..Al2
response
apple
newton (QQi!} use -goto- here)
pear

unit
answer
do
wrong

response
apple
newton
pear

unit
answer
goto
wrong



<IQQ~kontinued)
write Wrong fruit.
endarrow

MORE ABQUT JUDGING

write
BA~continued)

Wrong fru it.
(QQ use -endarrow- here)

Interactions of -arrow- with -size-, -rotate-, -Iong-,
-jkey-, and -copy-

When an -arrow- command is performed, several things happen. An
arrow character is displayed on the screen, cuing the student to enter a
response. A note is made of the unit and location within that unit of the
-arrow- command so that TUTOR can return to this marked spot when
necessary. Even the trail of -do-s (and/or -join-s) which brought TUTOR
to this -arrow- command is saved, so that each restart at the -arrow- will
be at the appropriate level of -do- relative to the main unit. The current
settings of -size- and -rotate- are saved, to be restored each time so that
you can write a size-3 reply to a student's incorrect response without
affecting the size of his or her corrected typing. In other words, response-
contingent settings of -size- and -rotate- are temporary, whereas in other
circumstances they are permanent until explicitly changed:

size
rotate
arrow
answer
size
rotate
write
answer
endarrow
at
write

2
o
1718
dog
4
30
Woof!
wolf

2218
This is in size 2, rotate 0.

The last writing appears in size .2, rotafe 0 despite the size 4, rotate 30,
that were contingent on the student's response, "dog." When the search
state is initiated, the original size and rotate settings are restored.

149



The TUTOR Language

150

Similarly, if "dog" had been judged wrong, the student's revised typing
would have been in size 2, not 4, because the original size and rotate are
restored before waiting for the student's revised input.

Executing an -arrow- command has other important initialization
effects:

1) A default response limit of 150 characters is set. The student
cannot enter a response longer than 150 characters (including
"hidden" characters such as shift-codes and superscripts). This
can be altered by following the -arrow- command with a -long-
command to change this to as much as 300. If this is a "long I,"
judging will commence as soon as the student types one charac-
ter. If more than 1 is specified, the student is prevented from
entering more characters and must press NEXT to initiate
judging, unless a "force long" statement has appeared in the
unit.

2) A default specification of "judging keys" is set. In most cases,
the NEXT key is solely responsible for starting the judging
process. However, there are two other possible ways to begin
judging: (1) hitting the limit with a "force long"; or (2) if there
is a "long 1", typing one character will begin judging. This can
be altered by following the -arrow- command with a -jkey-
command to specify additional judging keys (NEXT is always a
judging key). One example is "jkey data,help" which would
make the DATA and HELP keys equivalent to the NEXT key at
this arrow.

3) A default specification is set to disable the COpy key. The
-arrow- command can be followed with a -copy- command to
specify a previously stored character string to be referenced with
the COpy key. An example is "copy v51,v3", where v51 is the
start of the character string and v3 is the number of characters.
This way of specifying a string of characters is the same as the
scheme used with -storea- and -showa-.

Some explanation of the COpy and EDIT keys is required. The
EDIT key is always available for the student to use in correcting his or
her typing. Pressing the EDIT key the first time erases all typing, after
which each press of the EDIT key brings back the typing one word at a
time. This makes it easy to make corrections and insertions without a lot
of retyping. Each press of the COpy key, on the other hand, brings in a
word from the character string specified by the -copy- command, as
opposed to bringing in the student's own typed words with the EDIT



MORE ABOUT JUDGING

key. One example of the use of the COpy key is seen in the PLATO
lesson editor. In this case, you as an author can use the COpy key in
insert or replace mode to bring in portions of a preceding line without
having to retype. The COpy key must be specifically activated by a
-copy- command, but the EDIT key is always usable, unless you specify a
-long- greater than the normal limit of 150. (To use the EDIT key on
responses longer than 150 characters requires you to furnish an edit
buffer through an -edit- command.)

The -longo, -jkey-, and -copy- commands all override default specifi-
cations set by the -arrow- command. They can be thought of as modifiers
of the -arrow- command. If they are to have an effect on the student's first
response, they not only must follow the -arrow- command but must
precede any judging commands:

arrow 1518 $$ sets default values

{

jkey help }
copy cstring,ccount These commands alter the default values.
long 15
-specs- or -answer- or -store- or any other judging command

If -jkey-, -cOPY-,or -long- came after the first judging command, the
-arrow- defaults would hold for the first response because the modifying
command would not have been executed yet.

Applications of -jkey- and -ans-

Use of the -jkey- command is well illustrated in the case of providing
help to the student (through the HELP key) without leaving the page.
(This is an alternative to the more commonly used -helpop- command
described in Chapter 5.) If giving help requires an entire screen display,
or a whole sequence of help units, it is best to use a -help- command to
specify where to jump if the student presses HELP. The screen is then
erased automatically to make room for the help page (unless the original
base unit had an "inhibit erase" in it). On the other hand, sufficient help
might consist merely of a brief comment or some additional line-
drawings on the present page. A convenient way to provide such help
without leaving the page is:

151



The TUTOR Language

152

arrow
~jkey

answer
no
write

1815
help
cat

Hint: it meows ...

The statement "jkey help" makes the HELP key completely equivalent
to the NEXT key. If the student presses HELP, judging is initiated, the
student's (blank) response does not match "cat", and he or she gets "Hint:
it meows ... ". Without the -jkey- command, the HELP key would be
ignored (which would be unfortunate). It is a very good idea to have the
HELP key do something at all times so that the student can come to rely
on help being available.

In this example, the student will get the same assistance whether he
or she presses HELP or types "dog" followed by pressing NEXT. We
could give different kinds of assistance in these two cases by changing
the -write- statement to a -writec-:

arrow
jkey
answer
no
writec

1815
help
cat

key=help,Meow?,The answer is cat.

The system variable "key" always contains a number corresponding to
the last key pressed by the student. In this case the last key will either be
HELP or NEXT. If the student presses HELP, the logical expression
"key=help" will be true (--1) and the student gets the reply "Meow?"
But, if the student presses NEXT, then the logical expression "key=help"
is false (0) and the student gets "The answer is cat." The lower-case word
"help" is defined by TUTOR to mean (in a calculational expression) "the
number corresponding to the HELP key." Other similarly defined names
include next, back, and help1 (for shift-HELP).

The following is another way of writing the same sequence:



MORE ABOUT JUDGING

1815
help

arrow
jkey
no
judge
write
answer
no
write

$$ terminate judging
key= help,x,continue
Meow?
cat

The answer is cat.

If key=help, we "fall through" the -judge- command and write "Meow?"
If the key is not equal to help (that is, the student pressed NEXT), a
"judge continue" is performed to return to the judging state. The
"write Meow?" is skipped since -write- is a regular command. If the
response does not match "cat", the student will get the message "The
answer is cat". As usual, there are many ways in TUTOR to do the same
thing! In a particular situation one scheme may be more appropriate than
another.

There is an ANS key on the keyset which is often used to let students
skip through material by just pressing ANS:

1817
ans

arrow
jkey
ok
judge
write
answer

key=ans,x,continue
The answer is cat
cat

Since the ANS key generates an ok judgment here, the student will move
on immediately to the next arrow or unit without having to type the
correct answer. This procedure could best be utilized when the student is
in the review mode. That is, you might define "review=v1", zero it
initially, and set it to -1 only after the student has gone through the
material once under his or her own power. With the following structure,
the student will be able to use the ANS key only when reviewing the
material:

153



The TUTOR Language

154

arrow
do

~ok
judge

1817
review,jans,x

key=ans,x,continue

unit
jkey

jans
ans

Another way to activate the ANS key for the student is to use the -ans-
command with a blank tag.

arrow 2123

~wanrsl'te"-'tS The answer is cat.

In the above example, the single -ans- command is equivalent to the
following:

jkey ans
ok
judge key=ans,x,continue

The -ans- command is a judging command and must be the first judging
command after the -arrow-. When it is first encountered, it sets up ANS to
be a judging key, and it is matched only if the ANS key is pressed. If the
-ans- command is used only to provide a kind of help, but not to let the
student pass on to the next item, put a "judge wrong" after the -ans-
command.

In many places you may do specific things in response to the ANS
and HELP keys. Elsewhere in the lesson it is appropriate merely to
utilize these keys so that something will happen when they are pressed.
Just put "jkey help,ans" after each such -arrow-. The student will then



MORE ABOUT JUDGING

get (at least) whatever reply you give him or her after the universal -no-
that catches all unrecognized responses. Certainly, every -arrow- should
provide some kind of feedback to unrecognized responses or the student
will become perplexed. The "jkey help,ans" will further insure that a
reasonable response to the student's input is always forthcoming. With-
out this -jkey- statement, nothing would happen when the student presses
ANS or HELP.

An additional procedure is advisable. Often a student will press
NEXT an extra time, perhaps because he or she hadn't noticed that a
response was to be typed. This blank response, consisting only of a
NEXT key, will probably get judged "no" at most arrows, which requires
an additional NEXT (or ERASE) to clear the "no" judgment before
typing a response. This can get confusing. In most cases it is best simply
to ignore blank responses by means of the statement "inhibit blanks",
which can be put in the -imain- unit (see Chapter 5). This statement
causes blank-NEXT inputs to be ignored, but other blank inputs such as
HELP or ANS are not ignored.

Use a -join- to insert recurring statements after an -arrow-;

arrow
join
answer

1917
ansheJp
cat

unit
inhibit
jkey

anshelp
blanks $$ or the -inhibit- could be in an -imain- unit
ans,help

Placing "join anshelp" after each -arrow- will insure that extra NEXT
keys are thrown out (while responses involving ANS or HELP keys, will
fall through to whatever reply you give to unrecognized responses). Note
that you must use -join-, not -do-, to attach unit "anshelp" if you add any
judging commands to that unit.

Just as the -imain- command can be used to specify a unit to be done
at the beginning of each new main unit, there is an -iarrow- command
("initialize arrow") which can be used to specify a unit to be joined after
every -arrow-. With the statement "iarrow anshelp", it is unnecessary to
write "join anshelp" after every -arrow- command. Unit "anshelp" will
be joined automatically after every -arrow-.

155



The TUTOR Language

Modifying the Response: -bump- and -put-

It is possible to delete characters from the judging copy of the
student's response by using the -bump- command:

arrow
~bump

answer

1812
as3 $$ delete all a's,s's, and 3's
rdvrk

This -answer- will be matched if the student types "33 aardvarks"
because the -bump- command reduces the judging copy of the response
to" rdvrk." The original response is not altered and can·be recovered with
a "judge rejudge". Also, the screen display is unaffected: the student
still sees "33 aardvarks" on the screen just as he or she typed it. On the
other hand, all judging commands following the -bump- are affected
since they all operate on the judging copy (not on the original response).
For example, a -storea- following the -bump- would give you" rdvrk".
Here is another example:

define

unit
at
write

arrow
long
storea

~bump
storea
ok
write

cfirst=v1,csecond=v2
first=v11,second=v21
conson
913
Type anything, and I'll
remove the vowels:
1309
100 $$ from v11 to v21 is 100 characters
fi rst,cfi rst¢:jcount
aeiou
second,csecond¢:jcou nt

You typed «a,first,cfirst».
Remove vowels: «a,second,csecond».
You used «s,cfirst-csecond» vowels.

Note that "cfirst" is the number of characters (including hidden charac-
ters such as shift characters) in the original response, whereas "csecond"
is the number of characters after the -bump- has removed the vowels.
This is a true connt since "jcount" always has an up-to-date character
count of the judging copy, as influenced by -bump- and related opera-

156



MORE ABOUT JUDGING

tions. (You may recall that "specs bumpshift" also affects "jcount" by
removing shift characters.) Suppose the student types "Apples taste
funnier". In this case, the student will get the reply:

You typed Apples taste funnier.
Remove vowels: Ppls tst fnnr.
You used 7 vowels.

The reason that the word "Apples" turns into "Ppls" with a capital "P" is
that a capital "A" is really a shift character followed by a lower-case "a".
With the "a" bumped out, the shift character stands next to the "p",
making a capital "P".

While the -bump- command will delete characters, the -put- com-
mand will change particular strings of characters:

arrow
~put
~ put

storea
ok
showa

1218
cat=dog
rat=mouse
first,jcount

first,jcount

All occurrences of "cat" change into "dog", and all occurrences of "rat"
change into "mouse". Suppose the student types "Scattered cats scratch
rats". The reply will be "Sdogtered dogs scmousech mouses"!

Both -bump- and -put- are judging commands. They operate on the
student's response. Like all judging commands, they stop processing
when encountered during the processing of regular commands. The -put-
command has a property similar to -store- in that it can terminate judging
with a "no" judgment if it cannot handle the student's response:

arrow
put
write
ok

1218
cat=enormous
Too many cats!

157



The TUTOR Language

158

If the student has many "cats" in his or her response, the -put- may cause
"jcount" to exceed the 150-character response limit. In this case, it
changes to the regular state, and the student gets the message "Too many
cats!" This regular -write- command normally is skipped, since we're in
the judging state.

The following is an eqtiivalent form of -put- which is often easier to
read:

put cat=dog
putd /cat/dog/
putd ,cat,dog,

All three of these statements are equivalent. The -putd- (d for delimiter)
takes the first character as the delimiter between the two character strings.
Other examples of its use are:

putd /=/equals/ $$ convert = sign
putd / // $$ remove all spaces

It is also possible to change variable character strings by using -putv- (v
for variable):

putv first,cfirst,second,csecond
~' v~'

string and count string and count

When you combine -put- and -bump- commands, you must be careful
about how you arrange them. For example, the following sequence is
nonsense:

bump
put

a
cat=dog

With all a's bumped the -put- will not find any eat's. Similar remarks
apply to sequences of -put- commands.

The -bump- command looks for single characters, so "bump B"
will not merely bump capital B's. All shift characters will be bumped as
well as lower-case b's. In other words, "bump B" is really
"bump shift-b". If you want to eliminate only capital B's, use
"putd /B//". This will find occurrences of the string of characters
"shift-b" and replace this string with a zero-length string, thus deleting
theB.

The main purpose of -bump- and -put- is to make minor modifica-



MORE ABOUT JUDGING

tions to the student's response and convert it into a form which can be
handled by standard judging commands. For example, the word-oriented
judging commands (-answer-, -match-, -concept-, etc.) cannot find pieces
of words. Suppose that for some reason you need to look for the fragment
"elect", and you don't care whether this appears in the word "selection"
or "electronics" or "electoral". Do this:

arrow
specs

~putd
~ answer

1723
okextra
lelectl elect I
elect

The -putd- is used here to put spaces before and after the string "elect" so
that it stands out as a separate word. You could also use the values of
"jcount" before and after executing the -putd- to determine whether
"elect" was present. The number of times it appeared could also be
determined from these values. The value of "jcount" will increase by two
for each insertion of two extra spaces.

Manipulating Character Strings

The judging commands -bump- and -put- operate on the judging
copy of the student's response. It is sometimes useful to manipulate other
strings of characters with -pack-, -move-, and -search-. These commands
are regular commands, not judging commands. Like -showa-, they
operate on stored character strings, not the judging copy of the student's
response. These commands are mentioned here because they are often
used in association with the analyzing of student responses. In particular,
the judging command -storea- can be used to get the response character
string. It can then be operated on with -move- and -search-. Finally, the
altered character string can be loaded back into the judging copy with the
judging command -loada- (load alphanumeric; the -loada- command is
precisely the opposite of -storea-). Since this section deals with a rather
esoteric topic, you might just skim through it now to get a rough idea of
what character string manipulations look like. If you later find a need for
such operations, you should study this section again.

159



The TUTOR language

Here is an example of a -move- statement:

move v3,5,v52,21,8

This means "move 8 characters from the 5th character of the string that
starts in v3 to the 21st character of the string that starts in v52." The 21st
through 28th characters of the v52 character string are replaced by the 5th
through the 12th characters of the v3 character string. The v3 character
string is unaffected. In other words, -move- has the form:

move string 1,start1 ,string2,start2,#characters moved

If the number of characters to move is not specified, one character will be
moved.

Here is an example of the use of -move-. Suppose the student types
"x+4y = y-3", and we want to convert this into the form "x+4y-(y-3)"
before using -store- on it. Assume "str" has been defined:

arrow
putd
storea
ok

{

move
judge
loada
store
ok
write

1812
.=.-(.
str,jcount

$$ x+4y=y--3
$$ x+4y-(y-3

')',1 ,str,jcounH 1
continue
str,jcounH1
result

$$ to do regular -move-
$$ x+4y-(y-3)
$$ to do judging -Ioada-

Subtracting the right side of
your equation from the
left side gives «s,result».

In the -move- command the parenthesis within single quote marks, ')',
means a character string one character long consisting of a right parenthe-
sis. Similarly, 'dog' would denote a character string consisting of d,o, and
g. Character strings up to ten characters in length may be described this
way, using single quote marks. The ~move- command shown above
moves the first character of ')', which is just a right parenthesis, to the
(jcount+1)th character position in "str". This effectively appends a right
parenthesis to the stndent's character string (as modified by the -putd-).
The -loada- command moves the final character string into the judging
copy so that -store- can operate on it. Note carefully the switches from the
judging state to the regular state and back again.

160



MORE ABOUT JUDGING

The -search- command is used to look for occurrences of specific
character strings. It has the form:

search string1 ,length1 ,string2,length2,start2,return. '~j \. ~~ . / .
strmg sought strmg return location

to look
through where to

start

Suppose we use -storea- to place the unaltered student response
"x+4y=y-3" in "str,jcount". Then use:

search '=',1 ,str,jcount, 1,charnum

~~~;:-:i~(.\ ~rn location
(string 1 to look
character through
long) start at

beginning
of string

This -search- command will set the variable "charnum" to 5, since the
equal sign is the 5th character in "x+4y=y-3". If the search is unsuc-
cessful, "charnum" is set to -1. As further illustration of -move- and
-search-, let's rewrite our earlier sequence without the -putd-:

arrow 1812
storea str,jcount
ok
search '=',1 ,str,jcount, 1,charnum
* Now make room for the -(:
move str,charnum +1 ,str,charnum +2,jcount-charnum
*Next insert the --(:
move '-(',1,str,charnum,2 $$ move 2 characters
* Append the) :
move ')',1 ,str,jcount+2
judge continue
(oada str,jcount+2
store result
ok

161

The TUTOR Language

The -search- finds the equal sign. The first -move- moves the latter part of
the string to make room for the insertion of '-('. The second -move-
makes the insertion which overwrites the characters (=y) which were
there originally. The third -move- appends the ')'. Normally, the -search-
would be followed by a "goto charnum,noeq,x" to take care of the case
where the student did not use an equal sign, in which case "charnum"
would be --l.

The single quote marks can be used to specify character strings up to
ten characters long. Longer character strings can be placed in variables
with a -pack- command:

pack v11,v3,abcdefghijklmnopqrstuvwxyz

. ~ ~hstring locatIon c aracter count

This packs a character string 26 characters long into vII and following
variables. The character count (26 in this case) is placed in v3. Since each
variable holds ten characters, v11and v12will be full while v13will have
the last six characters. The -pack- command might be considered analo-
gous to -storea-, since both place character strings in variables. In the case
of -storea-, the total character count can be gotten from the system-
defined variable "jcount". Here is another example:

showa v12,v1

This will display "H2S04" on the screen. The character count in v1 will
be ten, including three shift codes and two subscripts. The character
string H2S04 is actually composed of shift, h, subscript, 2, shift, s, shift,
0, subscript, 4. The character count portion of a -pack- command can be
left blank, as in "pack v12"dog", the result of which could be displayed
later with the statement "showa vI2". It is possible to embed "show"
commands in a -pack- statement:

pack string,count,There are $«s,totalp left.

There is also a conditional form, -packc-, analogous to -writec-:

packc cond,string,count,dog,cat,horse,cow
/ / j j 1

conditional -1 0 1 ~2
expression

162

MORE ABOUT JUDGING

There are other string-oriented commands. For example, -clock- will
get the time, -date- gets today's date, -name- gets the (I8-character) name
the student is registered under, and -course- gets the course the student is
registered in. These commands are used in the following illustration:

name
course
clock
date
write

v1 $$ v1 and v2 for name
v3
v4
v5
Hello! Your name is«a,v1,18».
You are registered in «a,v3».
The time is «a,v4».
The date is «a,v5».

Suppose the student is registered as "sam nottingham" in a course
"french4." It is 10:45:37 PM (22:45:37 on a 24-hour clock) on June 3,
1974. The student will receive this display:

Hello! Your name is sam nottingham.
You are registered in french4.
The time is 22.45.37.
The date is 06/03/74.

All of these commands, -name-, -course-, -clock-, and -date-, simply place
the requested character string in the specified variable for use in a
-showa-.

The -clock- command produces a character string. In addition, there
is a system variable "clock" which may be used in calculational expres-
sions. It holds the number of seconds of a daily clock to the nearest
thousandth of a second, and is convenient for calculating the amount of
time spent in a section of a lesson.

The -date- command also produces a character string. There is also a
-day- command which produces a number corresponding to the number
of days elapsed since January 1, 1973. This number of days and fraction
of a day is accurate to one-tenth of a second.

The TUTOR judging commands offer a great deal of power. We have
seen that the judging commands -bump- and -put- together with the
regular string-oriented commands -move-, -search-, and -pack- can be
used to change an otherwise intractable response into a form which can
be handled with TUTOR judging commands. This is a useful scheme as

163

The TUTOR Language

164

long as only minor modifications are required. However, if major
modifications of the response are required in order to be able to use
TUTOR judging facilities, it is usually simpler to "do your own judging."
That is, get the student's response with a -storea- and then analyze it with
string-oriented commands, together with the additional calculational
machinery described in Chapter 9. You might not even want to use the
built-in marker features of the -arrow- command, with the associated
returns to the -arrow-, when there is a "no" judgment. In such circum-
stances you might write a subroutine to be used in place of -arrow-
commands, which merely collects the student's response:

unit
arrow
storea
specs
ok
endarrow

arrow(apos)
apos
sstr,scnt¢:jcount
nookno

Instead of writing "arrow 1815" with associated judging commands
you would then write:

do arrow(1815)
calc,move,etc. to do your own judging

Naturally, this course of action is advisable only if you are trying to
analyze responses which have a form very different from those classes of
responses which can be handled well by TUTOR judging commands.

Catching Every Key: -pause-, -keytype-, and
-group-

Occasionally, it is useful to process individual keypresses without
waiting for a NEXT key. We have already discussed such typical
examples as moving a cursor and choosing a topic from an index. These
examples used a "long I" with an -arrow- in order to catch each
keypress. There is another way to do this, involving the -pause- command
which was introduced in Chapter 2 in connection with creating dis-
plays, particularly timed animations. As was pointed out in the discus-

MORE ABOUT JUDGING

sion of the -jkey- command in the present chapter, the system variable
"key" contains a number corresponding to the most recent key pressed by
the student. For example, if the student presses the letter "d", the system
variable "key" will have the numerical value 4 (since d is the 4th letter in
the alphabet). Putting these notions together, we have the following kind
of structure:

write Press "d", please.
pause
writec keyt4,You didn't press d.,Good!

The blank -pause- statement ("blank" in the sense of having no tag)
causes TUTOR to wait for the student to press a key. Any key will cause
TUTOR to move past the -pause- to the next statement.

In the example shown, the -pause- is followed by a -writec- condi-
tional on "keyi4". This -writec- can be written in more readable form by
replacing the "4" with a "d":

writec key,eld",You didn't press d.,Good!

Enclosing the d with (double) quote marks is taken in calculational
expressions to mean the number 4. Similarly, (v3<:="z")will assign the
value 26 to v3. If the student presses 0 or 1, "key" will have the numerical
value 27 or 28 respectively. That is, the 26 letters are followed by the
numbers 0 through 9, then come various punctuation marks. If the
student presses the plus key, "key" will have the numerical value" +",
which happens to be 37.

If the student presses a capital D, "key" will have the value 64+ "d",
or 68. The shifted or upper case letters have "key" value 64 greater than
the corresponding lower-case letters. Caution: some common keys such
as parentheses have key numbers smaller than 64 despite requiring the
shift key to type them. The most commonly used characters (lower-case
letters, numbers, and common punctuation marks) have key numbers less
than 64, independent of whether they are typed using the shift key. As for
the function keys (NEXT, BACK, HELP1, etc.), we have seen (in
connection with the -jkey- command) that the corresponding key num-
bers are given by next, back, help1, etc., as in:

goto key=help1,yes,no

No quote marks are used for the function keys.
A more convenient way to determine which key has been pressed is

to use a -keytype- command. Consider a cursor-moving procedure:

165

The TUTOR Language

define
unit
pause

~keytype
goto

num=v5,x=v1 ,y=v2,dx=10,dy= 10
cursor

num,d,e,w,q,a,z,x,c
num,cursor,x

calcs num -1 ,y¢:y,y +dy,y+dy,y+dy,y,y-dy,y--dy,y---dy

The -keytype- command searches through the listed keys (d, e, w, q, a, z,
x, and c in this case) and, similar to the -match- command, sets "num" to
-1 (if the key is not found in this list) or to 0, 1,2,3,etc. (if it is found). If
the student presses d, "num" will be set to 0; if the student presses c,
"num" will be 7; and if he or she presses D, "num" will be set to -1. The
-goto- statement effectively causes all unlisted keys to be ignored.

Note that no quote marks are used in specifying keys in a -keytype-
command. Capital letters and function keys may also be listed:

keytype v3,a,A,b,B,next,data,timeup

While the -keytype- command is most often used in conjunction with a
-pause- command, it can also be used in association with an -arrow-
command or any time that you want to find out which key was pressed
most recently. The function key timeup is one generated by TUTOR
when a timing key is "pressed" as the result of an earlier -time- command
or timed -pause- command (see Chapter 2).

Just as the -list- command can be used to specify a set of synonomous
words and numbers for use in "answer- and -match-, so there is a -group-
command available for specifying synonomous keys for use in a
-keytype- command:

define
group

keynum=v23,algkey=v24
algebra,x,y,z

keytype keynum,a,b,algebra,help

11 1 1o 1 2 3

If the student presses any of the keys x, y, or z, the variable "keynum"
will be assigned the value .2. An additional -keytype- command can be
used to separate members of a group:

166

MORE ABOUT JUDGING

keytype keynum,a,b,algebra,help
goto keynum,none,ua,ub,alg,somehelp

unit alg
keytype algkey,x,y,z

Some particularly useful -group- definitions are built-in. Without speci-
fying these definitions with your own -group- commands, you can (in a
-keytype- command) refer to these groups in the following ways:

alpha
numeric
funct

all 52 lower-case and upper-case letters
o through 9
function keys (next,help,etc.)

An example of the use of these built-in groups might be "keytype
v45,funct,a,b,c". You can also use previously defined or built-in groups to
define new groups:

group mine,a,b,c,help
group ours,mine,d,e,f
grou pa II,A,B,C,ou rS,numeric,fu net

It is important to note that if you use a -pause-, the key pressed will
not cause the associated character to appear on the student's screen. You
are in complete control. You may write something on the screen or not, as
you choose. Only if you use an -arrow- will the standard key display take
place (with the associated ERASE and other standard typing features
available). Similarly, if you press HELP, you will not automatically
branch to a unit specified by a previous -help- command, because a blank
-pause- gives you every key, function key or not.

There is a variant of the -pause- command which is usually more
useful than the blank -pause-. You can define which keys are to be
accepted, and all other keys will be ignored:

next umore
help discuss
data tables

(Continued on the next page.)

167

The TUTOR Language

168

pause keys=d,D,next,term,help,help1

Any key not listed here is completely ignored, as though the student had
not pressed it. Of the function keys listed, the HELP key will take the
student to unit "discuss", since you have already specified what you want
the HELP key to do. Note that this is not possible with a blank -pause-
which catches all keys. Similarly, what the TERM key will do has been
predefined (the student will be asked "what term?"). But the DATA key
will be ignored since it is not listed in the -pause- statement, and the
student cannot reach unit "tables" with the DATA key until he or she has
passed the -pause-. Pressing d, D, NEXT, or HELP1 will take the student
past the -pause-. The NEXT key is rather special here in that the
preceeding specification "next umore", unlike "help discuss", tells
TUTOR what to do when the present main unit has been completed.
Thus, pressing NEXT here takes us past the -pause- instead of branching
us immediately to a different unit as HELP does.

You may prefer not to ignore the HELP key nor to use it to access unit
"discuss". In this case, the statement "help discuss" must follow the
-pause- statement, or a "help q" must precede the -pause- in order to
quit specifying a help unit.

Touching the Screen

Most PLATO terminals have "touch panels" which make it possible
for the student to respond by touching the screen. For example, a
language drill might show the student pictures of various animals and ask
the student to point to the dog. You need a way to tell at which part of the
screen the student pointed. This is most easily done with -pause- and
-keytype- statements, as in the following example:

pause keys=touch
keytype num,touch(1215),touch(100,200)

The first statement, using the built-in group "touch", tells PLATO to
expect a touch input. The -keytype- statement will set "num" to 0, if the
student touches as close as possible to screen location "1215"; will set
"num" to 1, if the student touches near location "100,200"; and will set

MORE ABOUT JUDGING

"num" to --1, if the student touches the screen elsewhere.
How close the student must be to location "1215" or location

"100,200" depends on the resolution or fineness of the touch panel. Most
touch panels cover the screen with a 16 by 16 grid of square touch areas.
Each square is 32 dots by 32 dots in size, or 4 characters wide by 2
characters high. If the square touched by the student overlaps location
"1215" or location "100,200", TUTOR will consider that the student has
pointed at that place.

You can define larger regions of the screen. For example:

keytype num,touch(1215;8,4),touch(100,200 ;64,32)

In this case, the -keytype- statement will set "num" to 0 if the student
touches somewhere within a box whose lower left corner is at "1215",
whose width is 8 characters, and whose height is 4 characters. The
variable "num" will be 1 if the student touches within a box whose lower
left corner is at fine-grid location "100,200", whose width is 64 dots, and
whose height is 32 dots. The touch-panel square touched by the student
must overlap one of your rectangles in order for TUTOR to consider that
a rectangle has been touched.

You can abbreviate "touch" by "t" and write "t(1215)" instead of
"touch(1215)".

In addition to the pause-keytype combination, you can also use a
-touch- judging command with an -arrow-. See the PLATO on-line "aids"
for details.

Summary

In this chapter we have discussed, in some detail, the marker
properties of the -arrow- command. The -arrow- command as we have
seen serves as an anchor point which TUTOR clings to until the -arrow-
is satisfied by an "ok" judgment (at which point a search is made for
additional -arrow- commands). We looked at some cases involving the
repeated execution of -join- in regular, judging, and search states, and of
the non-execution of -goto- in the judging and search states. We have also
looked at other side-effects of the -alTOW-command, including initializa-
tions associated with -size-, -rotate-, -longo, -jkey-, and -copy-.

In addition, we have seen how the -bump- and -put- commands can
be used to change a student's response into a form more easily handled by
the standard judging commands. This is particularly useful when only
slight changes are necessary.

In Chapter 7 we saw how to store numeric and alphanumeric

169

The TUTOR Language

170

responses for later processing (-store- and -storea-). These capabilities
make it possible to "do your own judging" in those cases where the
standard judging commands are not suitable. The basic TUTOR judging
commands provide a great deal of power but cannot handle all possible
situations. Fortunately, there is always the possibility of performing
calculations on a stored student response, which means that TUTOR is
open-ended in its judging power. The regular commands -search- and
-move- can be used to manipulate stored character strings. (In Chapter 10
you will find discussions of "segments" and "bit manipulations" which
permit you to use the -calc- command to perform additional operations on
character strings.) We have also discussed how to handle input from the
student by collecting each key with a -pause- command, then using
-keytype- (aided by -group-) to make decisions on a key-by-key basis. We
have learned, also, how to use similar techniques to determine where the
student had touched the screen.

Additional Display Features 9

More on the -write- Command

It should be pointed out that the -at- command not only specifies a
screen position for subsequent writing but also establishes a left margin
for "carriage returns" (CR on the keyset), much like a typewriter. Upon
completion of one line of text, the next line will start at the left margin set
by the last -at- eommand. There are carriage returns implicit in "contin-
ued" write statements:

at
write

1215
Now is the
time for all
good men to
come home.

The "at 1215" establishes a left margin at the 15th character position so
that each line will start there. This example will produce an aligned
screen display similar to the appearanee of the tags of this continued
-write- statement.

The setting of a margin by -at- has an unusual side effeet. Consider:

at 2163
write The cow jumped.

171

The TUTOR Language

This will put the following display on the screen:

Th
e
co
w
ju
mp
ed

This unusual display is caused by the setting of the left margin at
character position 63, just two characters shy of the right edge of the
screen. When a -write- would go past the right edge of the screen,
TUTOR performs a carriage return to drop down one line, starting at the
left margin. An -arrow- also sets a left margin with respect to the student
typing a long response which would pass the right edge of the screen.
Further typing appears on the next lower line starting at the margin set by
-arrow-.

Occasionally, it is useful to position something on the screen without
setting a margin. This can be done with an -atnm- command ("at with no
margin"). The statement "atnm 1215", is equivalent to "at 1215", but
does not change the current margin setting.

It is important to understand that writing characters on the screen
automatically advances the terminal's current screen position. Suppose
we have consecutive -write- statements:

at 712
write horses
write and cows

This sequence will display "horseand cows" all on line 7. The first -write-
("horses") advances the terminal's screen position from the 712 specified
by the preceding -at- to 712+6=718 (there being 6 characters in the text
"horses"). Without an explicit -at- to change this, the second -write- ("and
cows") starts at position 718. Note that:

at
write

712
horses
and cows

would give a different display:

horses
and cows

172

ADDITIONAL DISPLAY FEATURES

because the "continued" -write- statement implies carriage returns.
TUTOR keeps track of the current screen position in a system

variable named "where". For example:

at
write
at
write

712
horses
where+305 $$ "where" is 712+6=718 here
and cows

will produce the display:

where

horses~
I
I

3 lines : where+305

i\t and cows
..)

5 characters

The statement "write horses" leaves the screen position at 712+6=718,
and the system variable "where" therefore has the value 718. When you
then say "at where+305" this is equivalent to saying "at 718+305" or
"at 1023".

There are many uses of this "where" system variable. Here is another
example:

at
write
arrow

1215
What is your name?
where+3

This will appear as:

What is your name? ~ Sam

The arrow has been positioned 3 characters beyond the end of the -write-
statement's display.

The positioning information is useful with other display commands
as well. Consider this:

173

The TUTOR Language

174

at 815
write Look at th is!
draw where;815

This will display underlined text:

Look at th is!

This is due to the fact that upon completion of the -writc- statement,
"where" refers to the beginning of the next character position just after
the exclamation point. We simply draw from there back to the starting
point. This form of the -draw- statement is so common that a concise form
is permitted. For example, "draw ;815" is equivalent to
"draw where;8I5".Either form will draw a line or figure starting at the
current screen position. This is particularly useful in constructing a
graph (by connecting the new point to the last point with a line). The
point reached with a -draw- (or any display command) will be the new
screen position and may be referred to through the system variable
"where", which is kept up to date automatically by TUTOR.

There are fine-grid system variables "wherex" and "wherey" which
correspond exactly to the coarse-grid "where". The position
"where+305" is equivalent to "wherex+(5x8),wherey-(3x 16)" because
a character space is 8 dots wide and 16 dots high. The minus sign is
present because, in coarse grid, line 4 is below line 3, whereas in fine grid
dot 472 is above dot 471.

Superscripts and subscripts may be typed either in a locking or
nonlocking mode. To type "1023" you can either: (a) press 1,press 0, press
SUPl<:R,press .2, press SUPER, press 3 (non-locking ease); or (b) press 1,
press 0, press shift-SUPER (that is, hold down the shift key while
pressing SUPER), press 2, press 3. To get down from a locked superscript
you type shift-SUB (locking subscript). Notice that in typing superscripts
or subscripts the SUPER and SUB keys are pressed and released before
typing the material to be moved up or down. You do not hold these keys
down while typing, unlike the shift key used for making capital letters.

It is possible to overstrike characters to make combinations. The
symbol "y" can be made by typing v, backspace, SUPER, minus sign.
This will superimpose a raised minus sign above the v. The backspace is
typed holding down the shift key while hitting the wide space bar at the
bottom of the keyset. Similarly, "hQ.t:§st can be typed by typing "horse"
followed by five backspaces and five underline characters. Note that these
superpositions of characters won't work in "mode rewrite", where a new
character is written on the screen. In mode rewrite, the last example
would show up as " ", the "horse" having been wiped out by
the characters whose only visible dots are the low, horizontal bars.

ADDITIONAL DISPLAY FEATURES

Extensions to the Basic Character Set

We've seen examples of lower-case and upper-case characters, num-
bers, punctuation marks, superscripts, and subscripts. What if you need
special accent marks, or an unusual mathematical symbol, or the entire
Cyrillic alphabet for writing Russian? It is important that you be able to
write text on the screen using the special symbols of your particular
subject area. In addition, it is possible to use special characters to display
s;mall, intricate figures whose display would be slow and cumbersome if
done with -draw- commands.

The PLATO terminal has 126 built-in characters (including those
used so far) and storage for 126 additional characters which can be
different in every lesson. For example, Russian lessons fill this additional
character storage space with the Cyrillic alphabet, whereas there is a
genetics lesson which fills the storage area with fruitfly parts whieh
permit displaying flies by writing appropriate characters at appropriate
positions on the screen. We will learn how to access all 252 characters
(126 which are built-in and 126 which can be varied).

The 126 built-in characters include many useful symbols which do
not appear on the keyset (since there aren't enough keys). This is due to
the fact that the keys on the right of the keyset are reserved for various
important functions (ERASE, BACK, STOP, etc.). In order to access the
"hidden" characters it is necessary to first strike the ACCESS key
(presently the shift-O key) and then to strike a second key. Like SUPER
and SUB, the ACCESS key is not held down but struck. You can press
ACCESS, then "a" to get a Greek alpha; ACCESS-b for beta;
ACCESS-m for mu; ACCESS-= for of; and also ACCESS-<or> for
:5 and;;::. It is useful to try ACCESS followed by every key (or shifted
key) at a terminal to find approximately 36 useful hidden characters. In
most cases, there is a mnemonic connection between the key which
follows the ACCESS key and the hidden character which results, such as
=1= being ACCESS-=. ACCESS followed by comma gives the symbol:
mentioned in the discussion of the -writec- command in Chapter 6.
ACCESS-0 and ACCESS-l give the symbols <t and» used for embedding
-show- commands in -write- statements. (In the discussion of "micro
tables" later in this chapter, we will see that the MICRO key is equivalent
to the ACCESS key, under normal circumstances.)

You can get at the "alternate font" of 126 additional, modifiable
characters by pressing the FONT key (the shifted MICRO key), then
typing regular keys, which will produce characters from the alternate
font. Which characters appear depends on what character set has been
previously loaded into the terminal. The FONT key toggles you between
the standard built-in font and the alternate font (you stay in the alternate

175

The TUTOR Language

176

font until you strike FONT to return to the standard font). It is, therefore,
not necessary to strike FONT for each symbol (unlike the way ACCESS
works).

Here is an example of the use of a special character set:

at
write

chars<!t
erase
unit
at
write

912
Now LOADING CHARACTER SET.
Please be patient - loading
takes about 17 seconds.
charsets,russian

$$ full-screen erase to remove message
intro
9.0"5
The Russian word KapaH~aw means pencil.

Fig. 9-1.

The -charset- statement sends to the terminal the character set specified in
the tag (character set "charsets,russian" in this case). Character patterns
are transmitted to the terminal at a rate of 7.5 character patterns per
second, so a full 126-character set will take about 17 seconds to send.
Precede the -charset- command with a -write- statement to explain this
delay to the student, so that he or she will not think that something is
wrong or broken! The full-screen -erase- will remove the message upon
completion of the loading process. Once the character patterns have been

ADDITIONAL DISPLAY FEATURES

loaded into the terminal, it is possible to write Russian text on the
student's screen at the same high speed as English, 180 characters per
second, which corresponds to a reading speed of almost two thousand
words per minute.

TUTOR keeps track of which character set has been loaded into the
terminal and skips a -charset- statement if loading is not required. In the
above example, TUTOR would rush right through the message, skipping
the -charset- and erasing the screen. There would not be the 17-second
delay which occurs if the Cyrillic characters have not been loaded.

The -write- statement in unit "intra" is created by:
1. typing "write The Russianword";
2. striking the FONTkey to select the alternate font;
3. typing the keys k, a, r, a, n, d, a, w (which

causes KapaH,D.aW to appear)
4. striking the FONT key to toggle backto the standard font
5. typing" means penciL"

Each character in the alternate font is associated with a key on the keyset.
For example, the creators of the "russian" character set chose to associate
the Cyrillic" 11." with the "d" key because of the phonetic similarity of
these two letters. Similarly, the Cyrillic "p" and "H" sound like the "r"
and "n" letters with whose keys they are associated. Just as accessing
some of the 126 built-in characters requires the ACCESS key, so a full
126-character alternate font will also necessitate the use of the ACCESS
key to reach some of the characters.

If the student is to respond at an -arrow- with a Russian response, he
or she must hit the FONT key in order to do so. Usually it is preferable to
precede the first judging command with the statement "force font",
which essentially hits the FONT key for the student. The student merely
uses the regular typing keys, but the typing appears in the alternate font.
Some languages, including Arabic, Hebrew, and Persian, are written
right-to-left instead of left-to-right. For these languages use a
"force font,left" and the student's typing will automatically go left-
wards from the -arrow- in the alternate font.

The "initial entry unit" (ieu)

You may have noticed that the first few statements of the previous
example (which write a message, load a character set, and then erase the
screen) are not preceded by a -unit- statement. This is intentional.

177

The TUTOR Language

TUTOR statements which precede the first -unit- statement ("unit intro"
in this case) constitute an "initial entry unit" which is performed
whenever a student enters the lesson. The "initial entry unit" (or "ieu") is
the logical place to put various kinds of initializations, such as a -charset·
statement to load characters which will be used throughout the lesson.
Although -define-, -vocabs-, and -list- statements are not actually executed
(they are only instructions to TUTOR on how to interpret -calc-,
-concept-, and -answer- statements in preparing a lesson for student use),
they can also be placed in the "ieu" at the beginning of the lesson, for the
sake of readability.

The importance of the "ieu" lies in the fact that it is performed no
matter where the student starts within the lesson (even if the student does
not start at the first unit statement). TUTOR is capable of keeping track of
a student's place within a lesson, so that a student who leaves without
finishing a lesson is able to restart the next day where he or she left off. It
is important, in the restarting process, to load thc appropriate character
set. The restart procedure can not be executed properly if the -charset-
statement comes after the first -unit- statement (since the student will not
go through the first part of the lesson again).

Suppose the student is to restart in unit "middle", which looks like
this:

unit middle
next mid2

The "ieu" is utilized in such a way that TUTOR acts as though the "ieu"
were done at the beginning of the restart unit:

unit middle
(do "ieu")
next mid2

This pseudo-do is the reason for following the -charset- statement with a
full-screen erase. We don't want the "loading" message to interfere with
the display to be created by unit "middle".

Smooth Animations Using Special Characters

The -charset- command is not limited to its use with foreign
alphabets. Special characters are often used to create pictures:

at 1319
write This~ uses special characters!

118

ADDITIONAL DISflLAY FEATURES

The car is composed of several adjacent characters. Because characters
can be drawn very fast (180 per second), dramatic animations are
possible:

mode
do
*

rewrite
drive,x<:=100,400

unit
at
write

drive
x,200
~

The car advances one dot at a time. If the car characters are designed in
such a way as to leave a vertical column of blank dots at the back of the
car, the "rewrite" mode will insure that the advancing car simultaneously
erases its old position. If two columns are left blank, the car could be
advanced two dots at a time and still completely wipe out the previous car
display. This type of animation can run as fast as twenty or thirty moves
per second, which creates the illusion of a smoothly moving object.

For the built-in characters there is an expandable and rotatable (but
slow) line-drawn form available through the use of -size- and -rotate-, but
these commands have no effect on charset characters. If a larger or rotated
car is needed, it can be constructed with -draw- and -circle- commands,
built up out of additional special characters, or produced with "lineset"
characters. A lineset is like a charset, but the characters are made up of
lines instead of dots. If "size" is not zero, and a lineset is in effect,
alternate-font text is displayed as line-drawn characters which can be
expanded and rotated.

Creating a New Character Set

Figure 9-2 on the following page demonstrates how a special
character is designed at a PLATO terminal. The author moves the cursor
on an 8 x 16 grid to specify which dots are to be lit. The author can
inspect "in the small" the appearance of the character he designs "in the
large". The letter shown at the top of the page is the key with which this
character will be associated when typing in the alternate font, just as
character" A" is associated with key "d" in "charset russian". The
character pattern is stored in such a way that the author can (at any later
time) recall the pattern and modify it. A character set can contain up to
126 special characters or as few as one or two characters.

179

The TUTOR Language

180

Character Design t 2.

"+" move point mode
"0" stor,,: point mode
- remove poi nt mode

"i" inspect
"R" re'5tore

This T 15 your character

Pres,s -BACK- to format I.,lJhenyou ar-e done
Press -HELPl-to exit without formating

Fig. 9-2.

Figure 9-3 shows how an author can create several 8 x 16 characters
at once to be used together or separately. This option is particularly
helpful when designing character-mode pictures .

." I h l-
I I

-
StOI'-",

F:

..

BFiCf d:::·n"'~
HEL_F'l - ~~..:I,

Fig. 9-3.

ADDITIONAL DISPLAY FEATURES

Your own character set will be stored in an electronic storage area
assigned to you. Such storage areas are called "lesson spaces" because
they mainly hold TUTOR statements which describe a "lesson to be
administered to students by PLATO. Your lesson space might be called
"italian3" and it is by this name that you refer to the lesson space when
you want to look at the TUTOR statements or change them. Within this
lesson space you can also have one or more character sets, which you will
have named. Suppose in lesson space "italian3" you have stored a
character set named "rome". In this case, the TUTOR statement used to
.transmit this character set to a terminal is:

charset italian3,rome

1 \
lesson space character set

The same format holds for linesets.

Micro Tables

It is sometimes desirable to associate a string"of several characters
with a single key. For example, the symbol V may be produced by v,
backspace, superscript, minus sign. It is possible to set up a "micro table"
so that v may be produced simply by hitting the MICRO key followed by
hitting "v". Similarly, the micro table might specify that MICRO-e
should be equivalent to typing e, shift-SUPER, k, x, SUPER, 2, shift-SUB
to make e kx

2
• The micro table makes possible a kind of shorthand which

can be useful both to authors composing -write- statements and to
students typing complicated responses.

Like character sets, micro tables reside in lesson spaces. If lesson
space "italian3" contains a micro table named "dante", these micros can
be made available to students by the statement:

micro italian3,dante

As with -charset-, the -micro- statement should be placed in the "ieu"
(initial entry unit).

Figure 9-4 on the following page shows how an author defines an
item in a micro table, by associating a string of characters with a
particular key. Later the effect of striking MICRO followed by this key is
identical to typing this string of characters. With a "force micro" in
effect, the student does not even have to press MICRO. This makes it easy
to redefine the keyboard.

181

The TUTOR Language

182

Press the ke~/ you want to set a, t1ICRO for ...

e

Here is the old MICRO...

Type in the new MICRO ...

l> ekx2

(pres5.3ACK to leave as 15.1

LAB .. see everything BACK", all fini_shed
DATA", changemic-ro t~,,'pe DATAl = FUNCTION opi:,i·:)n

Fig. 9-4.

If you do not specify your own micro table, a standard one is
provided that lets you use the MICRO key as though it were the ACCESS
key. For example, MICRO-p gives ACCESS-p, which is 'IT. This
means you can (and should) mention only the MICRO key to students in
your typing directions to them. It is not necessary to mention ACCESS.
Note, however, that ACCESS-p must be used to make a 'IT if you have
your own micro table with a different definition for MICRO-p.

The Graphing Commands: Plotting Graphs with
Scaling and Labeling

Yau may often want to plot a horizontal or vertical bar graph or other
kinds of graphs to display relationships. There exists a group of TUTOR
commands which collectively make it very easy to produce such displays.
In particular, scaling of your variables to screen coordinates is automatic,
as is the numerical labeling of the axes, with tick marks along the axes.
Figure 9-5 shows some examples.

Suppose you want a graph to occupy the lower half of the screen. The
horizontal x-axis should run from zero to ten and the vertical y-axis from
zero to two. Both axes should be labeled appropriately. These statements
will make the display shown in Figure 9-6.

ADDITIONAL DISPLAY FEATURES

Ididgets

T,:,ta I Sa Ie::;
Gr·)ss Pr<:>fi ts

--

>

,,,' .-" r 10Lh 11 t ,_,Pr. :Ju_€,:j

Theoret 1'::,,,,, L,Cur\'€'

FnJg.:o,ls

'~l i t -:ohe5

Stimulus

Fig. 9-5.

unit setup
gorigin 50,50 $$ x,y graph origin
axes 400,150 $$ lengths in dots
scalex 10 $$ maximum x
sealey 2 $$ maximum y
labelx 2,.5 $$ major mark every 2,
* minor every .5
labely .5 $$ major mark. every .5
graph 6,1.5,A $$ x=6, y=1.5
graph 8,.5,Be $$ x=8, y=.5
hbar 3,1.5 $$ horizontal bar to
* 3,1.5
vbar 4.5,1 $$ vertical bar to
* 4.5,1
gdraw 2,.5;4,1.5;7,0
gat 4,2
write Top

~--~._._ .._-,,-- .'---. -- --~-~-- ---41:1
" --~_._- --- --- G'-

"
T,:'I=

, 5 f1

1 • 1 5€i

12r. 5 Be

• " • , '4

" '" 1;
513

Fig. '9-6.

After specifying -gorigin- and -axes- in terms of fine-grid screen coordi-
nates, the -scalex- and -scaley- commands associate scale values with the
end points of the axes. These scale values determine how (x,y)coordinate
positions given in later statements will be scaled to screen coordinates.

183

The TUTOR Language

The -labelx- and -labely- commands cause numerical labels and tick
marks to appear. The statement "graph 6,1.5,A" plots an A at x=6, y=1.5
in scaled coordinates. The -hbar- and -vbar- commands draw horizontal
and vertical bars to the specified scaled points. The -gdraw- command is
like -draw-, except points are specified in terms of scaled quantities. The
-gat- command is like -at- but uses scaled quantities.

Read the example over and try to identify in the picture what part of
the display results from each statement. (Keep in mind that each number
in the tags of these statements could have been a complicated mathemati-
cal expression.)

The -markx- and -marky- commands are similar to -labelx- and
-labely- but merely display tick marks without writing numerical labels.
The -axes- command has an alternative form which allows for axes in the
negative directions. (See Figure 9-7.)

gorigin 100,200
axes --50,--100,300,150

'------v------' '------v---'

minimum~ ~aXimum x,y
from origin from origin

150

5.

2 ••

184

Fig. 9-7.

Although the commands were originally designed to make it easy to
draw graphs, the automatic scaling features make these commands useful
in many situations. Note, in particular, that you can move complicated
displays around on the screen merely by changing the -gorigin- state-
ment.

Additional graphing commands include -gvector- for drawing a line
with an arrowhead at one end, -polar- for polar coordinates, and -lscalex-
and -lscaley- for logarithmic scales. The -bounds- command has the same

ADDITIONAL DISPLAY FEATURES

effect as -axes- in establishing lengths, but no axes are drawn on the
screen (a later blank -axes- command will display the axes). The -gbox-
command is used to draw rectangular boxes easily. The -gcircle- com-
mand draws circles or, if the x- and y-scales are different, -gcircle- will
draw an ellipse.

Functions can be plotted very easily with the -funct- command. For
example, "funct 5sin(2w),w¢'1,5,.02" will plot the function "5sin(2w)"
by evaluating this function for values of w running from 1 to 5 in steps of
.02. Note the similarity to the form of the iterative -do- statement. If there
was an earlier "delta .02" statement, we can leave off the increment and
simply write "funct 5sin(2w),w¢:1,5". If, in addition, we want the
function to be plotted all the way from the left edge of the established
axes to the right edge, we simply write "funct 5sin(2w),w".

Summary of Line-drawing Commands: -draw-,
-gdraw-, -rdraw-

Recall that the -draw- statement has the form:

draw point1 ;point2;point3;etc.

Each point in a -draw- statement may be coarse-grid (such as "1215") or
fine-grid (such as "135,245"). Each point specification is set off by a
semicolon in order to avoid ambiguities when mixing coarse-grid and
fine-grid points, as in "draw 1525;1932;35,120;1525" (the first two
points are given in coarse-grid; the third, in fine-grid; and the last point in
coarse-grid coordinates).

A discontinuous line drawing can be made with a single -draw-
statement by using the word "skip":

draw 1518;1538;skip;1738;1718

Using "skip" in a -draw- statement means "skip to the next point without
drawing a line." This example is essentially equivalent to:

draw 1518;1538
draw 1738;1718

The only difference between these otherwise equivalent forms is related
to the fact that the system variables "where", "wherex", and "wherey"
are not brought up to date until the completion of the -draw- statement.
The sequence:

185

The TUTOR Language

186

at 1319 $$ affects "where"
draw 1518;1538;skip;1738;where

is equivalent to:

at 1319
draw 1518;1538
draw 1738;1319

since during the -draw- statement "where" has the value 1319. On the
other hand, the sequence:

at 1319
draw 1518;1538
draw 1738;where

is equivalent to:

at 1319
draw 1518;1538
draw 1738;1538

since upon completion of the first -draw- statement, the value of "where"
is 1538. This difference between a single -draw- using "skip" and
separate -draw- statements is sometimes useful in drawing figures relative
to some point.

As mentioned earlier, starting with a semicolon implies a continued
drawing from the present screen location. The sequence:

at 1319
draw ;1542;1942

is equivalent to:

at 1319
draw where; 1542;1942

and is also equivalent to:

draw 1319;1542;1942

Sometimes you have more points for a -draw- than will fit on one
line. A "continued" -draw- can be written, with the command blank on
succeeding lines:

ADDITIONAL DISPLAY FEATURES

draw 1512;1542;skip;100,200;
400,200 ;400 ,400;
100,400; 100,200

This will behave as though all the points had been listed on one line.
To summarize, the -draw- statement contains nne-grid or coarse-grid

points separated by semicolons, "skip" can be used for a discontinuous
drawing, "where" and the nne-grid "wherex" and "wherey" are brought
up to date upon completion of the -draw-, and starting the tag with a
semicolon has the special meaning of continuing a drawing from the
present screen position.

The -gdraw- command is like the -draw- command except that points
are relative to the graphing coordinate system established by -gorigin-,
-axes-, (or -bounds-), -scalex-, and -scaley- (or logarithmic scales set up by
-lscalex- and -lscaley-). Of particular value are the "skip" option and
starting with a semicolon (for continuing a drawing). The use of "where",
"wherex", and "wherey" in a -gdraw- statement is normally not meaning-
ful, since these system variables refer to the absolute screen coordinate
system, not the graphing system. In the graphing coordinate system, there
are only nne-grid, not coarse-grid points, so all points have the form
"x,y".

It is possible to use -draw- to draw something relative to the present
screen position:

at 2215
draw wherex+25,wherey- 75;wherex+ 200,wherey+ 150

(Remember that "wherex" and "wherey" do not change until the comple-
tion of the -draw- statement.) There is an -rdraw- command ("r" for
"relative") which makes such drawings simpler. The example just shown
can be written: .

rorigin 2215
rdraw 25,-75;200,150

Each point of an -rdraw- is taken to be relative to an origin established
with an -rorigin- command.

The -rdraw- command is particularly useful for applications such as
writing the same Chinese characters at different places on the screen. For
each character, make a subroutine involving one or more -rdraw- state-
ments. The characters can be positioned with -rorigin- statements:

187

The TUTOR Language

188

400,400
chin1
400,300
chin2

etc.

rorigin
do
rorigin
do

Or you might include the -rorigin- statement in the character subroutines:

do chin 1(400,400)
do chin2(400,300)

In this case each subroutine has a form like this:

unit
rorigin
rdraw

chin1(a,b)
a,b
-75,30;75,30;etc.

Unlike -draw-, the -rdraw- command is affected by preceding -size-
and -rotate- commands. Your Chinese characters can be enlarged and
rotated:

size
rotate
do
do

3,5 $$ 3 times the width, 5 times the height
45 $$ rotated 45 degrees
chin1 (400,400)
chin2(400,300)

(Another way to handle such things as Chinese characters is with
-lineset-.) Figure 9-8 shows a design created with the following com-
mands:

rorigin
do
*

250,250
figure,a¢:0,360,15

unit
rotate
rdraw

figure
a
-50,0;50,0;0,200; -50,0

The -rotate- command affects -rdraw- even with "size 0", even though
-write- is not rotated in size 0. (The -write- statement is unaffected in
order to facilitate normal text operations.) As far as -rdraw- is concerned,
size 0 is equivalent to size 1. As far as -write- is concerned, size 0 meanS
"write text at 180 characters per second, unrotated", whereas size 1means
"write line-drawn text at 6 characters per second, rotated".

ADDITIONAL DISPLAY FEATURES

Fig. 9-8.

Note that -rdraw- and -size- are essentially reciprocal to -gdraw- and
-scalex-. In the case of -rdraw-, a drawing gets bigger when -size-
specifies a larger size. But, specifying a larger number in a -scalex-
command implies that the same number of screen dots (given by -axes-)
will now correspond to larger (scaled) numbers in a -gdraw-. This means
that a larger -scalex- implies a smaller -gdraw- figure. Note that -gorigin-
affects -gdraw- the same way that -rorigin- affects -rdraw-.

There is a complete set of "relative" commands for making displays
relative to an origin specified by -rorigin-, and affected by -size- and
-rotate-. Here is a summary:

"ABSOLUTE"

at
atnm
draw
box
vector
circle

"RELATIVE" (-size-)
rorigin
rat
ratnm
rdraw
rbox
rvector
rcircle

"GRAPHING" (-scalex-,-scaley-)
gorigin
gat
gatnm
gdraw
gbox
gvector
gcircle

Note that -rcirc1e-will draw an ellipse if the x-and y-sizes are different (as
in "size 1,4", for example).

189

The TUTOR Language

The "halfcirc" subroutine of Chapter 4 could be conveniently
rewritten using relative commands:

unit
at
circle
draw

"ABSOLUTE"
halfcirc
x,v
radius,0,180
x- radius,v;x+ radius,v

unit
rorigin
rcircle
rdraw

"RELATIVE"
halfcirc
x,y $$ sets rorigin and "rat 0,0/1
radius,0,180
-- rad ius,y; radius,y

It is important to note that the relative specifications set by -rorigin-,
-size-, and -rotate-, as well as the graphing specifications set by -gorigin-,
-bounds-, -scalex- (or -lscalex-) and -sealey- (or -lscaley-) carry overfrom
one main unit to another. If you would prefer to have these parameters set
to some standard values at the beginning of each main unit, simply do the
initializations in an -imain- unit. (Remember that the -imain- command
allows you to specify a unit to be performed every time a new main unit is
started.)

How do you decide which of the three sets of display commands to
use? If you want to rotate a drawing, you must use relative commands,
because the absolute and graphing commands are unaffected by the
-rotate- command. If rotations are not involved, just use whichever
commands seem most convenient at the moment. Absolute commands
may be used, quite often since they are the simplest and easiest to use.
The graphing commands are certainly best for drawing graphs of
functions, but they are also useful whenever it is convenient to think of
your drawing in terms of numerical scale factors. Graphing commands
are also needed if you use polar coordinates (invoked with the -polar-
command). Sometimes you may use all three sets simultaneously. For
example, in one of this author's lessons, the most convenient way to
produce the screen display was to give instructions at the bottom of the
screen using absolute commands, draw figures scaled in centimeters
using graphing commands, and superimpose a movable box on the
(absolute) instructions by means of relative commands.

The -window- Command

Sometimes it is useful to specify a "window" through which
drawings are viewed. Parts of a figure extending outside the window are
not drawn. A rectangular window is specified by giving the lower left and
upper right corners of the desired window:

190

ADDITIONAL DISPLAY FEATURES

window 100,200;400,300
~ '---V---'

~ .\
one corner opposite corner

The corners could also be given in coarse-grid coordinates, as in
"window 1524;1248".

Drawings constructed from the various -draw- commands and
-circle- commands are affected by a preceding -window- command.
Line-drawn text (size non-zero) produced by -write-, -writec-, -show-,
etc., will also be windowed. Like -size- and -rotate-, windowing is not
reset upon entering a new main unit. Be sure to use a blank -window-
command (blank tag) to turn off windowing operations. It is quite
common for an author to forget to turn off windowing and then wonder
why some of the drawings aren't showing up! The correct structure is
shown below. (See Figures 9-9 and 9-10.)

window one corner;opposite corner

(windowed) display statements

window $$ blank tag to turn off

Fig. 9-9. Fig. 9-10

191

The TUTOR language

192

More on Erasing: The -eraseu- Command

When a student's response is judged "no" or "wrong", he or she can
correct the response by hitting ERASE or ERASEl to erase a letter or
word, or by hitting NEXT, EDIT, or EDITl to erase the entire response.
If additional judging keys have been defined with a -jkey- command,
these will act like NEXT and erase the response. If there is only one
-arrow- command and no -endarrow-, these options are available even
after an "ok" judgment (except that a NEXT key or another judging key
takes the student to the next main unit rather than merely erasing the
response). If there is a "force firsterase", the student need not clear an
incorrect response by pressing NEXT before trying a different response.
In this case, the first key of the new response will cause the old response
to be erased.

If the student erases part or all of his or her response, the "ok" or
"no" is erased. Moreover, the last response-contingent message to the
student is erased, since it is no longer relevant. For example:

wrong cat
write The cat is

not a canine.

The student types "cat" and presses NEXT:

~ cat no

The cat is
not a canine.

ADDITIONAL DISPLAY FEATURES

Notice that there is a default -at- three lines below the response. Suppose
the student now presses ERASE:

~ ca

The "t", the "no", and the text of the -write- statement have all
disappeared automatically. This is appropriate since the comment "The
cat is not a canine" is no longer needed.

It is helpful to know that the method TUTOR uses for automatically
erasing such text is by re-executing the last -write-, -writec-, or -show-
statement in the erasc mode. Suppose we change the lesson slightly:

wrong
write

write

Now the sequence looks like this:

cat
The cat is
not a canine.

Meow!

~ cat no

The cat is
not a canine. Meow!

~ ca

The cat is
not a canine.

193

The TUTOR Language

Only the last -write- statement is removed, leaving "The cat is not a
canine" on the screen. Notice that the normal automatic erasing can be
prevented simply by adding an extra -write- statement. Even a blank
-write- statement will do.

As another example, consider this:

wrongv 4
write Number of apples=
show apnum

Only the -show- will be erased, leaving "Number of apples=" on the
screen. If this is not desirable, use an embedded -show-:

wrongv 4
write Number of apples=«s,apnum»

Now the last -write- statement includes the showing of the number, and
all the writing will be erased. It is important not to change "apnum" after
the -write-. If you change its value from what it was when shown by the
-write-, the re-execution in "mode erase" will turn off the wrong dots in
the numerical part of the writing. Here is the type of sequence to be
avoided:

wrongv
write
calc

4
Number of apples=«s,apnum»
apnum¢:apnum+25

The number will not be erased properly due to the change in "apnum".

194

ADDITIONAL DISPLAY FEATURES

Similar problems can arise with the other -show- eommands, including
-showa-.

Sometimes the automatic erasing of the last text statement is insuffi-
cient. For example, if the reply to the student included a drawing
produced with -draw-, or if there were several -write- statements, you
would need some additional mechanism to remove the reply when the
student presses ERASE. There is an -eraseu- command which you can
use to specify a subroutine to be done wh~n the student changes his or
her response:

~eraseu
~ arrow

unit
at
erase
at
erase

eblock
1215

eblock
1512
35,4
318
42

Unit "eblock" will be d0ne whenever the student changes a response.
Only the first press of the ERASE key triggers the erase unit, since
additional executions of the unit would be erasing nothing.

Another example involves an erase unit specific to a particular
response:

wrong
do
eraseu

(Continued on the next page.)

3 dogs
woof
remove

195

The TUTOR Language

196

unit
mode
do
mode
eraseu

remove
erase
woof
write

The statement "eraseu remove" defines unit "remove" as the unit to be
done when the student presses ERASE (or NEXT, etc.). Unit "remove" in
the example shown simply re-does unit "woof" in the erase mode, thus
taking off the screen everything originally displayed by unit "woof". The
final blank -eraseu- clears the pointer so there is no longer an erase unit
specified.

Notice the similarities between the -imain- and -eraseu- commands.
Both specify units to be done under specific conditions.

Keeping Things on the Screen: "inhibit erase"

Let us consider a modified version of the simple language drill
discussed in Chapter 7.

unit
next
back
at
write

at
write
randu
at
writec
arrow
answerc

espo
espo
satisfy
512
Here is a simple drill
on the first five
Esperanto numbers.
Press BACK when you
feel satisfied with your
understanding.
1812
Give the Esperanto for
item,5
2015
item -- 2,one,two,three,fou r,five
2113
item -2;unu ;du ;tri; kvar;kvin

This version will greatly annoy the student after the first couple ques-
tions. Each time the student gets an "ok" and presses NEXT to move on

ADDITIONAL DISPLAY FEATURES

to the next unit, the screen is erased and the student suffers through the
introductory paragraph being written again on the screen. It turns out to
be very annoying to see the same text replotted this way.

This is a situation where most of the material on the screen is not
changing and should not be replotted. Only the item and the student's
typing need be erased to make room for a new item and a new response.
One way to do this involves judging correct responses "wrong", as was
done in the dialog using -concept- discussed in Chapter 7. You should
use "specs nookno" to prevent the "no" from appearing, or you can use
the regular -okword- and -noword- commands to change the standard
TUTOR "ok" and "no". For example, use the statement
"noword Fine!" to cause "Fine!" to appear for a correct response. You
would need to do a "noword no" whenever the student answers
incorrectly. With all responses judged "wrong" we stay at the -arrow-
and do not move on to another main unit.

Another way to manage a screen on which little is changing involves
"inhibit erase". This statement prevents the normal full-screen erase
upon leaving the present main unit. The next main unit must also execute
an "inhibit erase" if no erase is to be performed upon leaving the second
unit. We can rewrite our drill using this feature:

unit espo
at 2015
erase 5
at 2115
erase 15
entry espo1

~inhibit erase
"-S.S next espo

back satisfy
(Continued on next page.)

unit
at
write

at
write
goto
*

preespo
512
Here is a simple drill
on the first five
Esperanto numbers.
Press BACK when you
feel satisfied with your
understanding.
1812
Give the Esperanto for
espo1

$$ item area

$$ response area

$$ leave instructions on screen

191

The TUTOR Language

198

randu
at
writec
arrow
answerc

item,5
2015
item - 2,one,two,th ree,four,five
2113
item ~·2;unu ;du ;tri; kvar;kvin

In unit "preespo" we display the instructions about the drill. We then go
to "espol", where we "inhibit erase" and display the first item. After
receiving an "ok", the student moves on to the next main unit, "espo".
The screen is not erased since there was an "inhibit erase". In unit "espo"
we erase the area containing the displayed item, and we also erase the
response area of the screen. We then fall through the -entry- command
and display a new item. This process repeats continually, and only those
parts of the screen which must be changed are erased.

It is important to place an explicit blank -erase- statement
("erase ") at the beginning of unit "satisfy". Since we have inhibit-
ed the normal full-screen erase, no erase will occur automatically when
the student presses BACK to leave the drill. If unit "satisfy" does not
explicitly erase the screen, the student will see a superposition of the drill
display and the display produced by unit "satisfy".

Similarly, if we specify a help unit, that unit should start with a
full-screen erase. Upon completion of the help sequence, we should come
back to unit "preespo" rather than "espo" in order to restore the screen
display properly, like this:

entry espo1
base preespo $$ to come back to preespo from help
help esphelp

The -base- command puts us in a help sequence, with the base unit being
"preespo". When a base unit has already been specified, pressing HELP
doesn't change the base unit (in other words, there is only one "level" of
help). When we reach an -end- command or press BACK, we will return
to the base unit, which is preespo. Note that unit "satisfy" should have a
blank base statement to insure that we are in a non-help sequence.
Otherwise, pressing BACK in unit "satisfy" will bring us to the base unit
"preespo" again.

ADDITIONAL DISPLAY FEATURES

Interaction of "inhibit erase" with -restart-

There is a -restart- command which is used to specify in which unit a
student should resume study upon returning to a PLATO terminal. For
example, suppose the last -restart- statement encountered on Monday by
student "Ann North" in course "lingvo" was "restart espo" in lesson
"espnum". On Wednesday she returns to a PLATO terminal and identi-
fies herself by name (Ann North) and course (lingvo). Her registration
records will show that she is to be restarted in unit "espo" of lesson
"espnum" and she will automatically be taken to that point. As discussed
previously, the "ieu" (initial entry unit) will be done, which among other
things permits character set loading.

Unfortunately, restarting at unit "espo" means that the basic drill
instructions contained in unit "preespo" will not appear (see last exam-
ple). This is basically an initialization problem. You should use -restart-
commands in such a way as to restart students only at the beginning of a
section of this kind. In this particular case, we should have had a "restart
preespo" rather than "restart espo", This is analogous to our use of
"base preespo" for returning from a help sequence. (The more common
form of the -restart- is the blank -restart-, which means "restart in the
present main unit." We would place a blank -restart- in unit "preespo".)

Aside from initialization questions related to TUTOR and the
display screen, it should be pointed out that the student has comparable
initialization problems. Since the student may be away for several days, it
is often advisable to have your restart points only at the beginning of
sections of the lesson. This way the student can ease back into the
context, whereas restarting in the middle of a discussion may be quite
confusing. In those lessons which include an index, the index unit may
be the best restart point. On the other hand, you will want to arrange
things to allow the student to restart in the middle of a section if that
section is very long.

When a student restarts in a lesson, he or she starts at the unit
specified by the last -restart- command. However, the student's saved
variables, v1 through v150, have whatever values were current at the time
he or she left the last PLATO class session. Therefore, some care is
required to initialize appropriate variables in the restart unit.

The -char- and -plot- Commands

In most cases, special characters are handled with a -charset-
command and displayed with a -write- statement using the FONT key.
Alternatively, -char- commands can be used to transmit character patterns

199

The TUTOR Language

to the terminal. If a -char- command sends a pattern to character slot 35 of
the terminal, that character can be displayed using the -plot- command:
"plot 35". The arguments of the -char- command can be computed
expressions so that a character can be constructed algorithmically.
Similarly, the -plot- command may have a mathematical expression for its
tag in order to choose the Nth character. See Appendix A for sources of
detailed information on the -char- command.

The -dot- Command

The statement "dot 125,375" will plot a single dot at the specified
location ("dot 1817" uses coarse grid). A sequence of -dot- commands
can produce sixty dots per second on the plasma display panel. A -draw-
with one point ("draw 125,375" or "draw 1817") makes a single dot
by drawing a minute line from this point to the same point (or itself) and,
for technical reasons, will produce only twenty dots per second. (The
commands -rdot- and -gdot- also exist.)

200

Additional Calculation Topics 10

Before discussing additional TUTOR calculational capabilities, let's
review briefly those aspects which have been covered so far:

1) Expressions follow the rules of high school algebra. Multiplica-
tion takes precedence over division, which takes precedence over
addition and subtraction. Superscripts may be used to raise
numbers to powers. The symbol 1T may be used to mean
3.14159 The degree sign (0) may be used to convert be-
tween degrees and radians.

2) There are 150 student variables, vi through v150, which may be
named with the -define- command. These variables can be set or
altered by assignment (¢:) and by '-store-, -storen-, or -storea-
commands. If a "define student" set of definitions is provided,
the student may use variable names in his or her responses.

3) Logical expressions are composed using the operators =, f, >,
<, ::?:, ::::::, and, or, and the "not" function. Logical expres-
sions have the value true (-1) or false (0).

4) There are several available system variables such as "where",
"wherey", "anscnt", "jcount", "spell", etc. Available system
functions include sin(x), sqrt(x), etc. A full list of system varia-
bles and functions is given in Appendix C.

5) The -show- command (and its relatives -showt-, -showz-,
-showe-, and -showo-) will display the numerical value of an

201

The TUTOR Language

202

expression. The -showa- command will display stored alphanu-
meric information. These commands may be embedded within
-write- and -writec- statements.

6) The -calcc- and -calcs- commands make it easy to perform
(conditionally) one of a list of calculations or assignments.

7) The -randu- command with one argument picks a fraction
between (/) and 1. With two arguments, it picks an integer
between 1 and the limit specified. There is a set of commands
associated with permutations: -setperm-, -randp-, -remove-, and
-modperm-.

8) The iterative form of the -do- command facilitates repetitive
operations.

Now let's look at additional TUTOR calculational capabilities.

Defining Your Own Functions

While many important functions such as In(x) and log(x) are built-in
to the TUTOR language, it is frequently convenient to define your own
functions. To take a simple example, suppose you define a cotangent
function:

define cotan(a)=cos(a)/sin(a)

Then, later in your lesson you can write:

calc r<:=cotan(3x+y--5)

and TUTOR will treat this as though you had written:

calc r¢'[cos(3x+y-5)/sin(3x+y-5)]

Such use of functions not only saves typing but improves readability.
CAUTION: In defining a function, the arguments must not be

already defined. For example, the following definition will be rejected by
TUTOR (with a suitable error message):

define x=v1
cube(x)=x3

This must be rewritten as:

define x=v1
cube(dummy)=dummy3

ADDITIONAL CALCULATION TOPICS

or anything similar. A function definition may involve previously defined
quantities on the right side of the "=" sign, however. You might have:

define x=v1
new(c)=c4+2x

In this case you might have a -calc- that looks like:

calc x¢=15.7
y¢=3new(8)

and this would be equivalent to:

calc x¢=15.7
y¢=3[(8)4+ 2x]

Sometimes it is convenient to define "functions" that have no
arguments:

define r=v1
quad"-~rL100
r3=r1/3

root=sqrt(r)
prod=r3xroot
trans=(r¢=prod)

Note that "prod" depends on two previous definitions, each of which (in
turn) depends on the definition of "r". There is no limit on how deep you
can go in definition levels. The unusual definition of "trans" permits you
to write an unusual -calc- (where the assignment is implicit in the
definition of "trans"):

calc trans

Essentially anything is a legal definition. The only rule is that the
definition make sense when enclosed in parentheses (since a defined
name when encountered in an expression is replaced by its meaning and
surrounded by parentheses). This means that you cannot define
"minus= -" because (-), a minus sign enclosed in parentheses, is not
permitted in an expression. On the other hand, "minus= -1" is all right
because (-1) is meaningful.

A function may have up to six arguments. Here is a function of two
arguments:

203

The TUTOR Language

204

define modulo(N,base)= N- [base x int(N/base)]

This means that modulo (17,5) in an expression will have the value 2; the
"int" or "integral part" function throws away the fractional part of 17/5,
leaving 3, so that we have (17-5x3)=(17-15)=2. This modulo function,
therefore, gives you what is left over in division of "N" by "base".

Here are a couple of other examples of multi-argument function
definitions:

define big(a,b)=-[ax(a?::b)+bx(b>a)]
small(a,b)=- [ax (a$b) +b x (b<a)]

The minus sign appears because logical true is represented by --1. If you
have "big(x+y,z)" in an expression, with (x+y)=7 and z=3, this expands
to:

--[7x (7?::3)+3 x (3) 7)]

which reduces to --[7x(-1)+3x(0)] which is 7. So our "big" function
picks out the larger of two arguments.

Arrays

It is often important to be able to deal with arrays of data such as a
list of exam scores, the number of Americans in each 5-year age group
together with their corresponding mortality and fertility rates, a list of .
which pieces are where on a chess board, or the present positions of each
of several molecules in the simulation of the motion of a gas.

Suppose we have somehow entered the exam scores for twenty
students into variables v31, v32, v33 ... up to v50. Here is a unit which
will let you see the score of the 5th or 13th or Nth student:

unit
back
at
write

see
index
1215
Which student number?
(Press BACKwhen done.)
1518

~.5,9.5 $$ range 1 to 20 N
The score of the «s,N»th student is «s,v(30+N)>.

arrow
store
wrongv
write

ADDITIONAL CALCULATION TOPICS

(The -wrongv- rather than -ansv- makes it easy to ask another question.)
The new element here is the "indexed variable":

v(30+N)

which means "evaluate 30+N, round to the nearest integer, and choose
the corresponding variable". For example, if N is 9, v(30+ N) is v(39) or
v39. If N is 13.7, v(30+N) means v44.

We might list and total all the scores:

calc
do
at
write
*

totak::0 $$ initialization step
showem,N<:=1,20
3035
The average score is «s,total/20}>.

unit
at
show
calc

showem
835+100N
v(30+N)
total<:=total+v(30+N)

As usual, it is preferable to define a name for this data, such as:

define scores(i)=v(30+i)

in which case we would write our last unit as:

unit
at
show
calc

showem
835+100N
scores(N)
tota 1<:=totaI+ sco res (N)

Due to the special meaning attached to "v(expression)" you must exercise
some care in using a variable named "v", in that you must write
"vx(a+3b)" and not "v(a+3b)" if you mean multiplication. We will see
later that the same restriction applies to the names "n", "vc", and "nc".
This restriction does not apply to students entering algebraic responses,
where "v(a+3b)" is taken to mean "vx(a+3b)". Students can use indexed
variables only if they are named (as in "scores" in the above example).
Such definitions must, of course, be in the "define student" set.

Suppose you have three sets of exam scores for the twenty students.
This might conveniently be thought of as a 3 by 20 ("two-dimensional")

205

The TUTOR Language

206

array. Suppose we put the first twenty scores in v31 through v50, the
second set in v51 through v70, and the third set in v71 through v90. It
might be convenient to redefine your array in the following manner:

define scores(a,b)=v(10+20a+b)

Then, if you want the 2nd test score for the 13th student, you just refer to
scores (2,13) which is equivalent to v(10+40+ 13) or v(63). If you wanted
to display all the scores you might use "nested" -do- statements:

do column,k~1 ,3
*
unit column
do rows,j¢~1,20
*
unit rows
at 820+10i+100j
show scores(i,j)

Unit "column" is done three times and for each of these iterations, unit
"rows" is performed twenty times.

There is an alternative way to define our array:

define i'~~v1,j=v2
scores=v(10+20i+j)

Then our unit "rows" would look like:

unit rows
at 820+10i+100j
show ~cores

The indices specifying which test is for which student are implicit. This
form is particularly useful when you have large subroutines where "i"
and "i" are fixed and it would be tiresome to type over and over again
"scores(i,j)". Just set "i" and "j", then -do- the subroutine.

It is frequently necessary to initialize an entire array to zero. One way
to do this is with -do- statements:

unit clear
do c1ear2,i<:=1,3
*

ADDITIONAL CALCULATION TOPICS

unit clear2
do clear3,j¢=1,20
*
unit clear3
calc scores(i,j)¢=0

A simpler way to accomplish the same task is to say:

zero scores(1, 1),60

You simply give the starting location (the first of the 60 variables) and the
number of variables to be cleared to zero. As another example, you can
clear all of your variables by saying:

zero v1,150

Not only is the -zero- command simpler to use, but TUTOR can carry out
the operation several hundred times faster! TUTOR keeps a block of its
own variables, each of which always contains zero. When you ask for 150
variables to be cleared, TUTOR does a rapid block transfer of 150 of its
zeroed variables into your specified area. This ultra-high-speed block
transfer capability can be used in other ways. For example:

transfr v10;v85;25

performs a block transfer of the 25 variables starting with v10 to the 25
variables starting with v85. In this way you can move an entire array from
one place to another with one -transfr- command, and at speeds hundreds
of times faster than are possible by other means.

Segmented Variables

Storing three scores for each of your twenty students required the use
of 60 variables, out of an available 150. We're running out of room! You
can save space by defining "segmented" variables which make it easy to
keep several numbers in each student variable. For example, you can
write a definition of the form:

define segment,score=v31,7

This identifies "score" as an array which starts at v31 and consists of
segments holding positive integers (whole numbers) smaller than 27

(which is 128). It turns out that each student variable will hold 8 such
207

The TUTOR Language

208

segments, so "score(8)" is the last segment in v31, while "score(9)" is the
first segment in v32. Since "score(60)" is the fourth segment in v38, we
need only eight variables to hold all sixty scores. You can use
"score(expr)" in calculations. The expression "e'xpr" will be rounded to
the nearest integer and the appropriate segment referenced. As a simple
example:

calc score(23)¢=score(3)+5

will get the third segment, add 5 to it, and store the result in the
twenty-third segment.

If we define a segmented one-dimensional array "score", we can
define a two-dimensional array as before:

define segment,score=v31,7
scores(a,b) =score(20a-20+ b)

With these definitions, "scores(1,1)" means "score (20--20+ 1)" or
"score(1)", which is the first segment in v31. As before, "scores" could
use implicit indices:

define i=v1,J=v2
scores=score(20i - 20+j)

In this case you use "scores" rather than "scores(exprl,expr2) in calcula-
tions. NOTE: At the present writing, the commands -zero- and -transfr-
cannot be used with segmented variables because these commands refer
to entire variables. You could, however, zero all of the scores by saying
"zero v31,8" which sets v31 through v38 to zero, which has the ~Hectof
zeroing all the segments contained in those eight variables. You can make
such manipulations more readable by defining your segmented array this
way:

define start=v31
seg ment,score=start, 7

Then you can write "zero start,8" rather than "zero v31,8". Similar
remarks apply to the -transfr- command.

It is possible to store integers (whole numbers) that can be negative
as well as positive:

define segment,temp=v5,7,signed

ADDITIONAL CALCULATION TOPICS

The addition of the word "signed" (or the abbreviation "s") permits you
to hold in "temp(i)" any integer from -63 to +63. The range 27 (128) has
been cut essentially in half to accommodate negative as well as positive
values. The following table summarizes the unsigned and signed ranges
of integers permissible for various segment size specifications up to 30
(sizes up to 59 are allowed, though beyond 30 there is only one segment
per variable).

Segment
size
n
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

2"
2
4
8

16
32
64

128
256
512

1 024
2048
4096
8192

16384
32768
65536

131 072
262 144
524288

1 048576
2097 152
4 194 304
8388608

16777216
33554432
67 108864

134217728
268435456
536870912

1 073741 824

unsigned range

o to 1
o to 3o to 7
o to 15
o to 31
o to 63o to 127
o to 255
o to 511
o to 1 023
o to 2047
o to 4 095o to 8 191
o to 16383
o to 32 767
o to 65 535
o to 131 071
o to 262 143
o to 524287
o to 1 048575
o to 2 097 151
o to 4194 303o to 8 388 607
o to 16777 215
o to 33 554431o to 67 108 863
o to 134217727
o to 268 435 455
o to 536870911o to 1 073741 823

Table 10-1.

signed range
No. of

segments
per

variable
60
30
20
15
12
10
8
7
6
6
5
5
4
4
4
3
3
3
3
3
2
2
2
2
2
2
2
2
2
2

--1 to +1
-3 to +3
--7 to +7

-15 to +15
-31 to +31
-63 to +63

-127 to +127
--255 to +255
-511 to +511

-1 023 to +1 023
-2047 to +2047
--4 095 to +4 095
-8 191 to +8 191

-16383 to +16383
-32 767 to +32 767
-65535 to +65535

-131 071 to +131 071
-262 143 to +262 143
-524287 to +524287

--1 048575 to +1 048575
-2097 151 to +2097 151
-4194303 to +4 194303
-8388607 to +8388607

-16777 215 to +16777215
-33 554 431 to +33 554 431
-67 108 863 to +67 108 863

-134217 727 to +134217 727
- 268 435 455 to +268 435 455
-536870 911 to +536 870 911

209

The TUTOR Language

210

As an example of the use of this table, suppose you are dealing with
integers in the range from -1200 to + 1800. You would need a segment
size of 12 (signed), which gives a range from -2047 to +2047. There
would be 5 segments in each variable. Your -define- might look like:

define segment,dates=v140,12,signed

It is not necessary to understand the rationale behind this table in order to
be able to use segments effectively. Explanations of the underlying
"binary" or "base 2" number system and the associated concept of a "bit"
are discussed later in an optional section of this chapter.

Segments are frequently used to set "flags" or markers in a lesson.
For example, you might like to keep track of the topics the student has
completed or which questions in a drill have been attempted. A segment
size of just one is sufficient for such things, with the segment first
initialized to zero, then set to one when the topic or question has been
covered. The definition might look like this:

define flags=v2
segment,flag=flags,1

In the first unit, (not the "initial entry unit") use the statement
"zero flags" to clear all sixty segments in v2. If you use up to 120
markers you would use "zero flags,2" to clear two variables, each
containing 60 segments. When the student completes the fourth topic you
use" calc flag(4)¢=1" to set the fourth flag. You can retrieve this informa-
tion at any time to display to the student which topics he or she has
completed. Note that the -restart- command can be used to restart the
student somewhere after the first unit (where the flags would otherwise
be cleared), so that you can remind the student of which sections he or
she completed during previous sessions.

Although only whole numbers can be kept in segments, it is possible
to use the space-saving features of segments even when dealing with
fractional numbers. Suppose you have prices of items which (in dollars
and cents) involve fractions such as $37.65 (37 dollars plus 65 hun-
dredths of a dollar). Assume that $50 is the highest price for an item.
Simply express the prices in cents, with the top price then being 5000
cents. Using the table, we see that a segment size of 13 will hold positive
integers up to 8191, so we say:

define price=v1 $$ in dollars and cents
segment,cents=v2,13
put(i)=[cents(i)¢=100price]
get(i)=[price¢=cents(i)/100]

ADDITIONAL CALCULATION TOPICS

A sequence using these definitions might look like:

calc price¢::28.37

calc put(16) $$ equivalent to "cents(16)¢::100price"

show get(16) $$ equivalent to "price¢::cents(16)/100"

The final -show- will put "28.37" on the screen, even though between the
"put" and "get", the number was the integer "2837". Notice the unusual
"calc put(16)" which has an assignment (¢::)implicit in the definition of
"put". Also notice that the variable "price" is changed as a side-effect of
"get". If this is not desired, we could define "get(i)=cents(i)/100".

As another example of the use of segments with fractional numbers,
suppose you have automobile trip mileages up to 1000 miles which you
want to store to the nearest tenth-mile (such as 243.8 miles). In this case
you must multiply by 10 when storing into a segment and divide by 10
when retrieving the information. You would use a segment size of 14,
since your biggest number is 10000. It should be pointed out that
rounding to the nearest integer occurs when storing a non-integer value
into a segment:

calc miles¢::539.47
seg(2)¢::10 miles $$ 5394.7 becomes 5395
miJes¢::seg(2)/10 $$ 5395/10 or 539.5

So, by going into and out of the segment, the "539.47" has turned into
"539.5".

Aside from the restriction to integers, calculations with segmented
variables have one further disadvantage: they are much slower than
calculations with whole variables. This is due to the extra manipulations
the computer must perform in computing which variable contains the
Nth segment, and extracting or inserting the appropriate segment. Seg-
ments save space at the expense of time. In many cases this does not
matter, but you should avoid doing a lot of segment calculations in a
heavily-computational repetitive loop, such as an iterative -do- which is
done ten thousand times. (There are other kinds of segments, "vertical"
segments, which are handled much faster but these have quite different
space requirements than regular segmented variables.)

211

The TUTOR Language

212

Branching Within a Unit: -branch- and -doto-

All of the branching or sequencing commands discussed so far
referred to -unit-s (or -entry-s). It is often convenient to be able to branch
within a unit, which is possible with the -branch- command:

unit
~branch
ClS at

write
5
do
8after

somethin
count~4,5,x,8after
1215
"count" is equal to 4

countit
count<:=15

The tag of the -branch- command is like the tag of a -goto-, except that
unit names are replaced by "statement labels." These labels appear at the
beginning of statements and must start with a number (0 through 9) to
distinguish them from commands, which start with letters. A statement
beginning with a label need not have any tag (as in the line above labeled
"5"), but it can have a tag like that of a -calc-, as in the last statement
above ("8after count<:=L5").In fact, a labeled statement is essentially a
-calc- statement. As with -goto-, "x" in a -branch- means "fall through" to
the next statement.

It is not permissible in a unit to label two statements with the same
label (nor can you have two units with the same name in a lesson). On the
other hand, since -branch- operates only within a unit and cannot refer to
labels in other units, it is all right to use the same label in different units.
(Similarly, you can use the same unit name in different lessons.) Note that
-entry- is similar to -unit-, so -branch- cannot be used to branch to a label
if an -entry- command intervenes.

It is often convenient to use -branch- rather than -goto-. In addition,
-branch- requires less computer processing than -goto-, so that heavily
computational iterations are better done with -branch- where possible.
Generally speaking, about the only time you must consider the computa-
tional efficiency of one TUTOR technique compared with another is
when you do a large number of iterations of some process. Unless you are
making many passes through the same statements, merely write your
TUTOR statements in what seems to be the simplest and most readable
manner. It is a mistake to spend time worrying about questions of
efficiency if the student will make only one pass through the statements.

Just as -branch- is a fast -goto- within a unit, there is a fast -doto-
(analogous to the iterative -do-) for use within a unit:

ADDITIONAL CALCULATION TOPICS

~doto
l-']8 calc

at
write
8end
circle

8end,i<:=first,last,i ncr
a<:=bxsin(5iO)
100,200+2a-i
T

100

The tag of the -doto- is similar to an iterative -do-, but instead of naming a
unit to be done repeatedly you name a statement label. For each iteration
TUTOR executes statements from the -doto- down to the named state-
ment label. After the last iteration is performed, TUTOR proceeds to the
statement which follows the -doto-label (-circle- in the above example).

Just as it is possible to have nested -do- iterations, it is also possible
to have nested -doto-s. Here is a comparison of -do- and -doto- for
displaying a two-dimensional array:

-do- -doto-

do
unit
do
unit
at
show

column,i<:=1,3
column
rows,j<:=1,20
rows
820+10i+100j
scores(i,j)

data
data
at
show
4

4,i<:=1,3
4,j<:=1,20
820+10i+100j
scores(i,j)

This nested -doto- example has the structure:

data 4

data

4J
4

Other possible structures include the following:

data 8--

data 5J5

8

213

The TUTOR Language

doto 8-- doto 8-

doto 5 doto
3J

doto
3J

3

3 doto
5~]

5 5

8 8

Note that in each case the "inner" -doto-s are nested within the "outer"
-doto-s. Here is a counter-example of a structure which is not permissible:

doto 5]_

:010 8j
8

ILLEGAL!

When do you use -doto- instead of an iterative -do-? Use -doto-
whenever the contents of the loop are very short, because the "overhead"
associated with each -doto- iteration is much less than the "overhead"
associated with each -do- iteration. This is due to the extra manipulation
involved in getting to the "done" unit. If the contents of the loop are long,
the overhead becomes insignificant, and either -do- or -doto- can be used,
whichever you prefer or whichever is more readable.

Array Operations

You have seen how to operate on individual elements of an array by
using indexed variables. It is also possible to define an array in such a
way as to permit operating on the array as a whole. Here are two sets of
statements, one using true "arrays" and the other using indexed variables,
with both routines calculating the sum of sixty scores (three scores for
each of twenty students):

TRUE ARRAY
define total=v1

arraY,scores(3,20)=v31

INDEXED VARIABLE
define total=v1,i=v2,j=v3

scores(a,b) =v(10+20a +b)

214

ADDITIONAL CALCULATION TOPICS

calc total¢oSum(scores) calc
doto
doto
calc
4

total¢:0
4,i¢:1,3
4,j¢:1,20
total¢:total +scores(i,j)

The calculation using indexed variables involves initializing "total" to
zero, then using nested -doto-s to add in each element of "scores". The
true array calculation is much simpler, involving a single -calc- state-
ment!

The statement "define array,scores(3,20)=v31" tells TUTOR to put
scores (1,1) in v31, scores (1,2) in v32, scores (1,3) in v33, etc., with scores
(2,1) in v51, scores (2,2) in v52, etc. Moreover, this "array" definition
permits you to work with the whole array, and there are various array
functions such as "Sum" to help you. The expression "Sum(scores)"
means "add up all the numbers in all the elements of the array".
Similarly, the statement "scores¢:scores+ 1" will cause all sixty array
elements to be increased by one.

Such whole-array operations are not possible with indexed variables,
because (with indexed variables) TUTOR does not know how many
elements make up the whole array. On the other hand, the complexities of
handling true arrays limits their size to 255 elements at present and to
only two "dimensions" (that is, you can't say "define array,points
(2,5,4)=vl", which would define a three-dimensional array). So, ordinary
indexed variables do have their uses, particularly when manipulating
large databases (as discussed in the next chapter). While the most useful
feature of true arrays is the ability to deal with all elements at once, you
can also refer to individual elements, such as scores(2,15), just as you
would with indexed variables.

Suppose we define two arrays, A and B, both ten variables long:

define array,A(10)=v141
array,B(10) =v131

The following calculations involving these arrays will have the specified
results:

CALCULATION RESULT

A¢:2B Each element of A is assigned the value of
two times the corresponding element ofB:
A(1)¢:2B(1), A(2)¢:28(2), etc.

(Continued on next page.)

215

The TUTOR Language

216

CALCULATION
(continued)

A<o:25
A<o:1/A

A¢=A+B

A¢=3.4cos(B)
A¢=B2
A¢=A and B

RESULT
(continued)

Each element of A is set to 25.
Each element of A is replaced by its recipro-

cal.
Corresponding elements of A and 8 are

added together, and the sum replaces the
element of A: A(1)¢=A(1)+B(1), A(2)¢=A(2)
+8(2), etc.

A(1)¢3.4cos(B(1)), etc.
Presently not allowed: use A¢=8xB instead.
Each element of A is replaced by --1 or 0,

depending on a logical "and" of the corre-
sponding elements of A and 8 (which
should of course contain logical values, -1
and 0, to begin with).

There are a couple of special operators unique to array manipulations:
A 0 B gives the standard "matrix multiplication", with row-by-column
multiplication and summation, and AxB gives the standard "vector
product" or "cross product". If A and B are one-dimensional arrays, the
matrix multiplication A 0 B yields a single number, known in mathemat-
ics as the "dot product". The symbol 0 is typed by means of MICRO-x,
and "x" is typed by MICRO-shift-x.

There are some useful functions:

Sum(A)
Prod(A)

Min(A)
Max(A)
And(A)
Or(A)
Rev(A)
Transp(A)

Adds up all the elements of A
The product of all the elements: A(1) x A(2)

x A(10)
Picks out the smallest value
Picks out the largest value
A(1)andA(2)andA(3) andA(10)
A(1)orA(2)orA(3) orA(10)
Reverses the order of the elements
Produces the transposed array: A(i,j)¢=A(j,i)

Combinations of the various operations and functions can be used to
your advantage. For example, a common statistical calculation involves
the square root of the sum of the squares of all array elements. This can be
easily obtained from sqrt(Sum(AxA)), or from sqrt(A 0 A) if A is a
one-dimensional array.

ADDITIONAL CALCULATION TOPICS

Arrays can be filled with a -set- command and displayed with a
-showt- command:

define
set

arraY,C(2,3)=V16j
C<:=100,200,300

400,500,600
1215
2C,5 $$ 5 figures

200 400 600
will display

at
showt

800 1000 1200

The -set- command fills elements in order. For example: C(I,I), C(I,2),
C(1,3), C(2,1), C(2,2), C(2,3). The -showt- ("show tabular") command
shows the numbers appropriately on the screen. You can also use
-showe-, -showo-, and -showa- (but not -show- or -showz- at present).

It is often convenient for the array elements to be offset, so that the
first element is not numbered "one". For example, you might want an
array of the world population from 1900 to 1970. In this case, simply say
"define array,popul(1900;1970)=vl", which assigns popul(1900) to vI
and popul(1970) to v71. Note the semicolon in the -define-. A two-
dimensional array with offsets is written "define array ,O(-3,0;5,8)=v 1",
where O(-3,0) is in vI, O(-3,1) is in v2, etc. The last element of this array
is 0(5,8).

Integer Variables and Bit Manipulation

This section goes much more deeply into the way a computer rep-
resents numbers and character strings. You might start off by skimming
this section to see whethpr you will need to study it in detail. You will
need this material only if you pack several pieces of data in one variable
or if you want to use -calc- operations on character strings.

A variable such as v150 can hold a number as big as 10:122(the
number 1 followed by 322 zeros) or a non-zero number as small as 10.-293
(a 1 in the 293rd position after the decimal point). These huge or tiny
numbers may be positive or negative, from ±10-·293up to ±10:122.Any
number held in v150 is recorded as sixty tiny "bits" of information. For
example, whether the number is positive or negative is one bit of
information, and whether the magnitude is 10+200or 10-200is another bit
of information. The remaining 58 bits of information are used to specify
precisely the number held in v150.

What is a bit? A bit is the smallest possible piece of information and
represents a two-way (binary) choice such as yes or no, or true or false, or

217

The TUTOR Language

up or down (anything with two possibilities). A number is positive or
negative and these two possibilities can be represented by one bit of
information. Numbers themselves can be represented by bits correspond-
ing to yes or no. Let us see how any number from zero to seven can be
represented by three bits corresponding to the yes or no answers to just
three questions. Suppose a friend is thinking of a number between zero
and seven and you are to determine it by asking the fewest possible
questions to be answered yes or no. Suppose the friend's number is 6:

a) Is it as big as 4? Yes.
b) Is it as big as 4+2? Yes.
e) Is it as big as 4+2+1? No.

From this you correctly conclude that the number is 6. You determined that
the number was made up of a 4, a 2, and no 1. You might also say that the
number can be represented by the sequence "yes,yes,no"!

As another example, try to guess a number between zero and 63
chosen by the friend. Suppose it is 37:

a) Is it as big as 32? Yes.
b) Is it as big as 32+16? No.
e) Is it as big as 32+8? No.
e) Is it as big as 32+4? Yes.
d) Is it as big as 32+4+2? No.
e) Is it as big as 32+4+1? Yes.

So the number is 37, or perhaps "yes,no,no,yes,no,yes". Try this ques-
tioning strategy on any number from zero to 63 and you will find that six
questions are always sufficient to determine the number. The strategy
depends on cutting the unknown range in two each time (a so-called
"binary chop").

Conversely, any number between zero and 63 can be represented by
a sequence of yes and no answers to six such questions. What number is
represented by the sequence

yes,yes,no,yes,no,yes?

This number must be built up of a 32, a 16, no 8, a 4, no 2, and a 1.
32+ 16+4+ 1 is 53, so the sequence represents the number 53.

Because a yes or no answer is the smallest bit of information we can
extract from our friend, we say any number between zero (six nos) and 63
(six yeses) can be represented by six bits. If on the other hand we know
the number is between zero and seven, three bits are sufficient to describe

218

ADDITIONAL CALCULATION TOPICS

the number fully. Similarly, numbers up to 15 (24-·1) can be expressed
with four bits, and numbers up to 31 (25-1) with five bits. Each new
power of two requires another bit because it requires another yes/no
question to be asked.

This method of representing numbers as a sequence of bits, each bit
corresponding to a yes or no, is called "binary notation" and is the
method normally used by computers. Whether a computer bit represents
yes or no is typically specified by a tiny electronic switch being on or off,
or by a tiny piece of iron being magnetized up or down. A TUTOR
variable contains sixty bits of yes/no information and could therefore be
used to hold a positive integer as big as (261L 1), which is approximately
1018, or 1 followed by 18 zeros. What do we do about negative integers?
Instead of using all sixty bits we could give up one bit to represent
whether the number is positive or negative (again, atwo-way or binary bit
of information) and just use 59 bits for the magnitude of the number. In
this way we could represent positive or negative integers up to ±(259-1),
which is approximately plus or minus one-half of 1018•

But what do we do about bigger numbers, or numbers such as 3.782
which are not integers? The scheme used on the CONTROL DATA®
PLATO computer is analogous to the scientific notation used to express
large numbers. For example, 6.02x 1023 is a much more compact form
than 602 followed by 21 zeros, and it consists of two essential pieces: the
number 6.02 and the exponent or power of ten (23). Instead of using 59
bits for the number, we use only 48 bits and use 11 bits for the exponent.
Of these 11 bits, one is used to say whether the exponent is positive or
negative (the difference between 10+6, a million, and 10-6, one-millionth).
The remaining ten bits are used to represent exponents as big as one
thousand (211L 1 is 1023, to be precise). The exponent is actually a power
of two rather than ten,.as though our scientific notation for the number 40
were written as 5x23 instead of 4x 101. That is, instead of expressing the
number 40 as 4x 101, we express it as 5x23, putting the 5 in our 48-bit
number and the 3 in the 11-bit exponent storage place. In this way we
split up the 60 bits as:

1 bit for positive or negative number
1 bit for positive or negative exponent
10 bits for the power of two
48 bits for the number

The 48-bit number will hold an integer as big as (248-- 1), which is about
2.5x 1014• If we wish to represent the number 1/4, the variable will have a
number of 247 and an exponent of ~49:

247 X2-49= 2-2 = 1/4

219

The TUTOR Language

220

That is, the 48-bit number will hold a large integer, 247, and the exponent
or power of 2, will be-49. The complicated format just described is that
used by the PLATO computer when we calculate with variables vI
through v150. It automatically takes care of an enormous range of
numbers by separating each number into a 48-bit number and a power of
two. This format is called "fractional" or "floating-point" format because
non-integral values can be expressed and the position of the decimal
point floats automatically right or left as operations are performed on the
variable.

Sometimes this format is not suitable, particularly when dealing with
strings of characters. The -storea- and -pack- commands place ten
alphanumeric characters into each variable or "word" (a computer
variable is often called a "word" because it can contain several charac-
ters). We simply split up the sixty bits of the word into ten characters of
six bits each, six bits being sufficient to specify one of 64 possible
characters, from character number zero to character number 63 (26-1). In
this scheme character number 1 corresponds to an "a", number 2 to a "b",
number 26 to a "z", number 27 to a "0", number 28 to a "1", etc. A capital
D requires two 6-bit character slots including one for a "shift" character
(which happens to be number 56) and one for a lower-case "d" (number
4). The -showa- command takes such strings of 6-bit character codes and
displays the corresponding letters, numbers, or punctuation marks on the
student's screen.

~ llin 0 f number

float ins-point

48-b it numberexpo

1 1 <48 bitsUJ

rrrrJW J U

6 6 6 6 bit~6 6 6 6 6 6
Fig. 10-1.

ADDITIONAL CALCULATION TOPICS'

Nonsensical things happen when a -showa- command is used to
display a word which contains a floating-point number. The two sign bits
(for the number and for the exponent) and the first four bits of the
exponent make up the first 6-bit character code. The last six bits of
the exponent are taken as specifying the second 6-bit code. Then the
remaining 48 bits are taken as specifyiI'J.geight 6-bit character codes.
Small wonder that using a -showa- on anything other than character
strings usually puts gibberish on the screen. On the other hand, using a
-show- with a character string gives nonsense: the floating-point exponent
is made up out of pieces of the first and second 6-bit character codes, the
48-bit number comes from the last eight character eodes, and whether the
number and the exponent are positive or negative is determined by
the first two bits of the first character code. (See Fig. 10-1)

So far we have kept numerical manipulations (-calc-, -store-, -show-)
completely separate from character string manipulations (-storea-,
-showa-). The reasons should now be clear. It is sometimes advantageous,
however, to be able to use the power of -calc- in manipulating character
strings and similar sequences of bits. For such manipulations we would
like to notify TUTOR not to pack numbers into a variable in the useful
but complicated floating-point format. This is done by referring to
"integer variables":

n 1,n2,n3--------------n 149,n 150
The integer variable n17 is the same storage place as v17, but its internal
format will be different. If we say "calc v17¢:6", TUTOR will put into
variable number 17 the number 6, expressed as 6x245 with an exponent of
-45, so that the complete number is 6x245X2-45, or 6. If on the other
hand we say "calc n17¢:(5",TUTOR will just put the number 6 into
variable number 17. (See Fig. 10-2.) Since the number 6 requires only
three bits to specify it, variable 17 will have its first 57 bits unused (unlike
the situation when we refer to the 17th variable as v17, in which case both
the exponent and the magnitude portions of the variable contain informa-
tion).

number

Iv17.6

n17+6

Fig. 10-2.

221

The TUTOR Language

222

Consider the following sequence:

calc n17<:=6

at 1223
showa n17,10

This will cause an "f" (the 6th letter in the alphabet) to appear on the
screen at location 1223. The first 9 character codes in n17 are zero, and
these zero or "null" codes have no effect on the screen or screen
positioning. Indeed, a "showa nI7,9" would display nothing since the
"6" is in the tenth character slot. If we use "show nI7", we will only see
a "6" on the screen. The integer format of n17 alerts -show- not to expect a
floating-point format.

If we say "calc n23<:=5.7",variable n23 will be assigned the value 6.
Rounding is performed in assigning values to integer variables. If
truncation is desired, use the "int" function: "n23<:=int(5.7)"will assign
the integer part (5) to n23. Indexed integer variables are written as
"n(index)" in analogy with "v(index)".

The -showa- and -storea- commands may be used with either
v-variables or n-variables. These commands simply interpret any v- or
n-variable as a character string. This is the reason why we were able to
use -showa- and -storea- without discussing integer variables.

It is possible to shift the bits around inside an integer variable. In
particular, a "circular left shift", abbreviated as "cls", will move bits to
the left, with a wrap-around to the right end of the variable. For example:

calc n17<:=6cls 54

at
showa

1223
n17,1 $$ show one character

will display an "f" even though the -showa- will display only the first
character, because the "6" has been shifted left 54 bit positions (9 six-bit
character positions). A circular left shift of 54 may also be thought of as a
right circular shift of6 because of the wrap-around nature of the circular
shift.

We have been using "nI7" as an example, but we should actually be
writing "inum" or some such name, where we have used a -define- to

ADDITIONAL CALCULATION TOPICS

specify that "inum=n17". For the remainder of this chapter we revert,
therefore, to the custom of referring to variables (v or n) by name rather
than number. Also, if we want the character code corresponding to the
letter "f" we should use "f" rather than 6. For example:

calc inum¢:"f" cls 54

is equivalent to but much more readable than:

calc n17¢:6 cls 54.

The quotation marks can be used to specify strings of characters. For
example:

calc inum¢:"cat"

will put these numbers in inum:

Fig. 10-3.

A "showa inum,10" will display "cat". Notice, particularly, that using
quotes in a -calc- to define a character string puts the string at the right
("right adjusted"), whereas the -storea- and -pack- commands produce
left-adjusted character strings. It is possible to create left-adjusted
character strings by using single quote marks: inum¢:'cat' will place the
"cat" in the first three character positions rather than the last three.

Let us now return to our early example of the number 37 expressed as
the sequence of six bits "yes,no,no,yes,no,yes". If we let 1 stand for
"yes", and 0 for "no", we might write this sequence as:

100101

which stands for:

(1x32)+(0x16)+(0x8)+(1 x4)+(0x2)+(1 x1) = 32+0+0+4+0+1 = 37

or even more suggestively:

223

The TUTOR Language

(1x25)+(0x24)+(0x23)+(1 x22)+(0x21)+(1 x2~) = 32+0+0+4+0+1 = 37

(Note that 20 equals 1.) Writing the sequence in this way is analogous to
writing 524 as:

(5x102)+(2x101)1f-(4x100) = 500+20+4 = 524

In other words, when we write 524 we imply a "place notation" in base
10 such that each digit is associated with a power of 10: 5x 102, 2x 101,
4x 100. Similarly, rewriting our yes and no sequences as 1 and 0
sequences, we find that the string of ones and zeros turns out to be the
place notation in base 2 for the number being represented.

Here are some examples. (10012 means 1001 in base 2.)

10012 = 23+2° =8+1 = 9
11002 = 23+22 = 8+4= 12

1101012 = 25+24+22+2° = 32+16+4+1 = 53
10000012 = 26+20 = 64+1 = 65

This base 2 (or "binary") notation can be used to represent any pattern of
bits in an integer variable, and with some practice you can mentally
convert back and forth between base 10 and base 2. This becomes
important if you perform certain kinds of bit manipulations.

An important property of binary representations is that shifting left
or right is equivalent to multiplying or dividing. Consider these exam-
ples:

~ shift left 2 places
9 cls 2 = 10012 cls 2 = 1001:00k = 36
(left shift 2 is like multiplying b/221 or 4)

~shift left 3 places
9 $c1s$ 3 = 1001:0002 =:72
(left shift 3 like multiplying by 23 or 8)

So, a left shift of N bit positions is equivalent to multiplying by 2N• A
right shift of N bit positions is equivalent to division by 2N (assuming no
bits wrap around to the left end in a cls of 60- N). There exists an
"arithmetic right shift", ars, which is not circular but simply throws
away any bits that fall off the right end of the word:

224

ADDITIONAL CALCULATION TOPICS

thrown away
9 ars 3 = 10012 ars 3]0»1 1.

This corresponds to a division by 23, with truncation (9/23 = 9/8 which
truncates to 1).

A major use of the 60 bits held in an integer variable is to pack into
one word many pieces of information. For example, you might have 60
"flags" set up or down (1 or 0) to indicate 60 yes or no conditions, perhaps
corresponding to whether each of 60 drill items has been answered
correctly or not. Or you might keep fifteen 4-bit counters in one word:
each 4-bit counter could count from zero to as high as 15 (24-1) to keep
track of how well the student did on each of fifteen problems. Ten bits is
sufficient to specify integers as large as 1023: you could store six 10-bit
baseball batting averages in one word, with suitable normalizations.
Suppose a batting average is .324. Multiply by a thousand to make it an
integer (324) and store this integer in one of the 10-bit slots. When you
withdraw this integer, divide it by a thousand to rescale it to a fraction
(.324). When we discussed arrays we had exam scores ranging from zero
to 100. The next larger power of two is 128 (27), so we need only 7 bits for
each integer exam score. Eight such 7-bit quantities could be stored in
one 60-bit word.

How do you extract a piece of information packed in a word? As an
example, suppose you want three bits located in the 19th of twenty 3-bit
slots of variable "spack":

inum¢:(spack ars 3) $mask$ 7

[x x X X X X X X X X X X X X X X 'X X ? ~J spack

[x X X X X X X X X X X X X X X X X X x IJ (spack ars 3)

[S m m f6 m 0 0~0 f6 m 0 f6 0 0 0 0 0 f6 mi] 7 (t 112)

{S0B B B 0 f6 m B m 0 m 0 000 0 0 0?1 Inum
Fig. 10-4.

225

The TUTOR Language

The number 7 is lIb (base 2: 4+2+ 1), so it is a 3-bit quantity with all
three bits "set" or "on" (non-zero). The $mask$ operation pulls out the
corresponding part of the other word, the 3-bit piece we are interested in.
In an expression (x $mask$ y), the result will have bits set (1) only in
those bit positions wherc both x and y have bits set. In those bit positions
where either x or y have bits which are "reset" or "off" (0), the $mask$
operation produces a 0. We could also have used a "segment" definition
to split up the word into 3-bit segments. .

A 4-bit mask would be 15 (11112) and a 5-bit mask would be 31
(l1l1b). (Again, "segment" definitions of 4 or 5 bits could be used.) You
might even need a mask such as 1101112 (or 55) which will extract bits
located in the five bit positions where 11011b has bits set. There should
be a simpler way of writing.down numbers corresponding to particular
bit patterns. Certainly, reading the number 55 does not immediately
conjure up the bit pattern 11011b!

A compact way of expressing patterns of bits depends on whether or
not each set of three bits can represent a number from 0 to 7:

I
55 = 11011112

~I~

1102 = 4+2+0 6 1112 = 4+2+1 = 7

\~
678 = 6x81+7x81i = 48+7 = 551~

(base 8) (base 10)

Just as each digit in a decimal number (base 10) runs from 0 to 9, so do the
individual numerals run from 0 to 7 in an octal number (base 8). Octal
numbers are useful only because they represent a compact way of
expressing bit patterns. With practice, you should be able to convert
between octal and base 2 instantaneously, and between base 8 and base
10 somewhat slower! See the table below.

base 10
o
1
2
3
4
5
6
7

226

base 8
o
1
2
3
4
5
6
7

These
should

be
memorized

base 2
o or 000
1 or 001

10 or 010
11 or 011

100
101
110
111

ADDITIONAL CALCULATION TOPICS

base 10
(continued)

8
9

10
11
12
13

base 8
(continued)

10
11
12
13
14
15

base 2
(continued)

1000
1001
1010
1011
1100
1101

The conversion between base 8 and base 2 is a matter of memorizing the
first eight patterns, after which translating- 11010110111012 to octal is
simply a matter of drawing some dividers every three bits:

1\101 :011 :0111101
1 I 5 I 3 I 3 I 5 = 153358

What is 153358 in base 10?

1 5 3 3 5 = 1x4096+5x512+3x64+3x8+5 = 585311'

How about the octal version of the number 79? The biggest power of 8 in
79 is 82 (64), and 79 is 15 more than 64. In turn, 15 is lx81+7x8f1, so:

Luckily, in bit manipulations the conversions between base 2 and base 8
are more important than the harder conversions between base 8 and base
10.

To express an octal number in TUTOR, use an initial letter "0":

x $mask$ 037

will extract the right-most 5 bits from x, because 037 = 378 = 0111112,

which has 5 bits set. Naturally, a number starting with the letter "0" must
not contain 8's or 9's.

You can display an octal number with a -showo- command (show
octal):

showo 39

227

The TUTOR Language

will display "00000000000000000047" on the screen (391ff=478). The
default format is twenty (3-bit) octads, corresponding to a whole 60-bit
word:

shown 39,4

will display "0047", showing just four octads.
Now that we have discussed the octal notation, it is possible to point

out what happens to negative numbers:

shown -39

will display "77777777777777777730". A negative number is the "com-
plement" of the positive number (binary 1's are changed to 0's and binary
0's are changed to 1's). In octal, the complement of 0 is 7 (0002-71112 =--=

78), and the complement of 78 is 08. In the example shown, octal 478 is
1001112, whose complement is 0110002, or 308,Notice that the left-most
bit (the "sign" bit) of a negative number is always set. In order for a
negative number to stay negative upon performing an "arithmetic right
shift", all the left-most bits are set. So,

yields:
040000000000000003242 ars 6

077400000000000000032.

Only the sign bit was set among the left-most bits before the shift (040 is
1000002), but after the shift the first seven bits are all set. The "cireular
left shift", cls, does not d9 anything special with the sign bit.

It is interesting to see the bits set for floating-point numbers:

calc
at
write

v1¢:3
1215
pos=<to,v1t;>
neg=<to,-v1t;>

$$ 0 for -showo-

will make this display:

pos = 17216000000000000000
neg = 60571777777777777777

228

ADDITIONAL CALCULATION TOPICS

Note that the negative number is the complement of the positive. The
48-bit magnitude (6000000000000000) represents a huge integer (6x245).

The eleven bits between the sign bit and the 48-bit magnitude give the
power of two (--46) by which the magnitude is to be scaled (3 =
6x245X2-46 = 6x2-1 = 3). A bias of 20008 is added to the correct
exponent (-46, or -568) to give an eleven-bit exponent of 17218.
Exponents less than 20008 represent negative powers and exponents
greater than 20008 represent positive powers.

We have encountered octal numbers (e.g., 0327) which can be shifted
left (cls) and right (ars) and complemented (by making them nega-
tive). Pieces can be extracted with a $mask$ operation. Additional bit
operations are $union$, $diff$, and "bitcnt". The "bitcnt" function gives
the number of bits set in a word: bitcnt(025) is 3, because 025 is 01010b,
which has 3 bits set; bitcnt (--025) is 57, since the complement will have
only 3 of 60 bits not set; and bitcnt (0) is 0. Like $mask$, $union$ and
$diff$ operate on the individual bit positions, with all 60 done at once:

x $mask$ y produces a 1 only where both x and y have 1'5.
x $union$ y produces a 1 where either x or y or both have 1's.
x $diff$ y produces a 1 only where x and y differ.

Note that $union$ might be called "merge", since 1's will appear in every
bit position where either x or y have bits set. The $diff$ operation might
also be referred to as an "exclusive" union, since it will merge bits except
for those places where both x and y have bits set.

While $mask$ can be used to extract a piece of information from a
word, a $mask$ that includes all but that piece followed by a $union$ can
be used to insert a new piece of information.

These bit operations can be used with arrays. For example, if A, B,
and C are true arrays, the statement "C<:=A$diff$ B" will replace each
element of C by the bit difference of the corresponding elements of A and
B.

Byte Manipulation

The most common use of bit manipulations is for packing and
unpacking "bytes" consisting of several bits from words each of which
contain several bytes. This can lead to major savings in space. If an exam
score lies always between 0 and 100, only seven bits are required to hold
each score, since (27-1) is 127. Another way to see this is to write the
largest 7-bit quantity: 111111b 1778= 1x82+7x81+7x8Jl = 64+56+7
= 127. This is one less than 2008, which requires an eighth bit. We can fit

229

The TUTOR Language

eight 7-bit bytes into each 60-bit word. Happily, TUTOR will do the
bookkeeping, as we saw earlier:

define segment,scores=n31,7

This definition makes it possible to work with this "segmented" array as
though it were an ordinary array:

calc ss¢::scores(3)
scores(17)¢::83

etc.

These refer to the 3rd and 17th bytes. The first eight 7-bit bytes reside in
n31, with the last 4 bits unused. The next eight bytes are in n32, etc. The
17th byte is the first 7-bit byte in n33.

Just as it is possible to give up one bit of a 60-bit worClin order to
have negative as well as positive numbers, so it is possible to have both
positive and negative numbers stored in a segment array:

define segment,temp=v52,8,signed

calc temp(23)¢::-95

With 8-bit bytes we can have numbers in the range of± 127. The word
"signed" may be abbreviated by "s".

Now that you understand the bit structure of a variable, you should
be able to understand the table (Table la-I) provided earlier of segment
ranges and the number of segments per variable. Look at the table now
and see whether you can check the entries in the table.

Vertical Segments

We might call the segments discussed so far "horizontal" segments
(the segments move horizontally across each word). It is possible to
define "vertical" seginents (each of which occupies only part of a word):
successive segments are found in the same position in successive
words, rather than in different positions within the same word. As an
example, "define segmentv,left=n51,1,30" defines vertical segments
each occupying the left half of words n51, n52, n53, etc. Each segment

230

ADDITIONAL CALCULATION TOPICS

starts in bit position 1 of each word, and each segment is 30 bits long. The
right halves of the words could be specified with "define segmentv,
right=n51,31,30", whose elements begin in the 31st bit position and are
30 bits wide. An "s" can be added to denote signed segments, as with
horizontal segments.

Aside from the intrinsic usefulness of this kind of segmenting of
words, the simpler structure permits TUTOR to process vertical segments
much faster than horizontal segments, and only slightly slower than
normal whole-word variables.

You can save space with true arrays by putting the elements in
vertical segments. The -define- statement looks like "define arraysegv,
A(10)=n5,3,12,s". This example defines a ten-element array, with A(l)
represented by a 12-bit signed segment starting in bit position 3 of n5. It
is not yet possible to define a true array in horizontal segments.

Alphanumeric to Numeric: The -compute-
Command

The -store- command analyzes the judging copy of the student's
response character string and produces a numerical result. This is
actually a two-step process. First, the character string is "compiled" into
basic computer instructions and then these machine instructions are
"executed" to produce the numerical result. During the compilation
process the "define student" definitions and the built-in function defi-
nitions (sin, cos, arctan, etc.) are used to recognize the meaning of names
appearing in the character string. Numbers expressed as alphanumeric
digits are converted to true numerical quantities. For example, the
character string 49 becomes a number by a surprisingly indirect process.
The character code for "4" is 31 since "z" is 26, "0" is 27, etc. The
character code for "9" is 36. The number expressed by typing 49 is
obtained from the formula:

10(31-27)+(36-27) or 10("4"-"0")+("9"-"0")
10(4)+(9)

40+9
49

For these and similar reasons, the compilation process is ten to a hundred
times slower than the execution process. Therefore, TUTOR attempts to
compile the student's response only once, while the resulting machine
instructions may be used many times.

231

The TUTOR Language

232

The first -store-, -ansv-, -wrongv-, -storeu-, -ansu-, or -wrongu-
command encountered during judging triggers compilation. All these
commands following the first One simply reuse the compiled machine
instructions. If a -bump- or -put- makes any changes in the judging copy,
a following -store- or related command will have to recompile. Similarly,
a "judge rejudge" will force recompilation by any of these commands.
Note that re-execution is always performed even if recompilation isn't,
because the student might refer to defined variables whose values have
been altered.

While -store- will compile and execute from the judging copy, the
regular -compute- command will compile and execute from any stored
character string:

compute result,string,#characters,pointer

For example:

compute v35,v2,v1,v22

/~\
character

return string pointer to
numerical machine instructions
result

After compilation, the "pointer to machine instructions" contains the
location of the machine instructions in a special -compute- storage area.
You must zero the pointer at first to force compilation. TUTOR will then
set the pointer appropriately, so that re-executions of the -compute-
command can simply re-execute the saved machine instructions. Here is a
unit which permits the student to plot functions of interest to him or her.

define student
x=v1
ours,student
resu It=v2,string =v3,point=v35
100,250
0,-.200,300,200
10
2

define

origin
bounds
scalex
scaley
*
unit
next

graph
graph

2 .•

1.6

r\ ~1.2

•. 8

•• 4... ~-'~--j5-·t'-';·_~~9 Y
-H . .04

~~

-.0'. a

-1.2

-1.6

-2.8

Type a function of x: ~ 2.5:'!1imv[1+x(c-:>s2'><:)2) ·:;,k

Fig. 10-5.

back
axes
labelx
labely
at
write
arrow
storea
ok
calc
compute
goto
gat
doto
compute
goto
gdraw
8plot
*

ADDITIONAL CALCULATION TOPICS

graph
$$ display the axes

1
0.2
3105
Type a function of x:
where+2
string,jcount

x¢:point¢:0
resu It,stri ng,jcou nt,poi nt
formok,x,badform
0,result $$ draw from here
8plot,x¢:.1,10,.1
resu It,stri ng,jcou nt,po int
formok,x,badform
;x,result

badform
3207
formok, ... $$ tell what's wrong
wrong

Different functions can be superimposed by changing the response
instead of pressing NEXT or BACK. The first -compute- in this unit
calculates the value of the student's function for x equal to zero. The -gat-
command positions us at location (0, result) so that the first -gdraw- will
draw a line starting at that point. The system variable "form ok" has the
value --1, if compilation and execution succeed; 0 if compilation suc-
ceeds but execution fails (due to such errors as trying to take the square
root of a negative number); and various positive integral values for
various compilation errors (missing parentheses, unrecognized variable
names, etc.).

Note that predefined functions can be more easily plotted with a
-funct- command. For example, the student could specify a value for "n",
and you could plot a polynomial simply by using "funct xn,x¢:0,10,.1".
But, you must use -compute- if the student is permitted to try arbitrary
functions of his or her own choosing.

As another example, the PLATO lesson "grafit" (written by this
author) permits the student to write up to fifteen statements in the grafit

unit
at
writec
judge

233

The TUTOR Language

language and execute his or her program to produce graphical output (as
seen in Fig. 10-6):

Welcome to GRAFIT
1 v.t ..ll
2 x.x+vd
3 v"v.+ [- (Ium) x3J d
~ t.t+d
5 eoto 2
f ~
7
6
9

III
11
12
11
1~
15

(HELP i~ avai lable)

Preee
-STOP-
to
quit.

This student's program calculates the motion of a mass oscillating on the
end of a non-standard spring. The two curves are the superposition of
running the program twice with different values of the parameters. The
heart of this lesson is a loop through a -compute- command with string,
character count, and point all being indexed variables. The index is the
line number, from 1 to 15. Each student response is analyzed using a
-match- command looking for keywords such as "goto". Then the rest of
the response is filed away with a -storea- into the string storage area
corresponding to that line number. The 15pointer variables are zeroed in
the "ieu" (initial entry unit) to insure that when the student returns to a
PLATO terminal after several days TUTOR won't be confused over
whether the strings have been recently compiled or not. Also, whenever
the student changes one of his or her statements, the corresponding
pointer is zeroed in order to force recompilation of the altered character
string. The student can press DATA to initialize parameters, LAB to
specify what variable to plot against what variable, and HELP for a
description of the grafit language. The student define set defines all 26
letters as variables the student can use.

234

x

-2.1111·/i-----·-----------------l
1l.IiJBB t

Pre558ACK to clean up ~creen.
6. B!B0

Fig. 10-6.

ADDITIONAL CALCULATION TOPICS

Note that even though s, i, and n have been defined in the student
define set, the student can use the "sin" function. The reason that the
student's "sin" is not interpreted as sxixn is that TUTOR looks for the
longest possible name in a string of characters typed by the student. One
difference between the handling of student expressions and author
expressions is that students cannot reference system variables such as
"where", "anscnt", or "data" (the numerical value of the DATA key). If
you want the student to be able to use "where", define it in the student
define set as "where=where". While authors are discouraged from using
primitive names such as v47 (except in a -define- statement), students are
not permitted to use primitives at all. This is done to protect the author's
internal information. Similarly, students cannot use the assignment
symbol (¢:), except in a -compute-, unless there is a "specs okassign".

It should be mentioned that while -compute- converts alphanumeric
information into a numerical result, there is an -itoa- command that can
be used to convert an integer to an alphanumeric character string. Most
often, however, the -pack- command with embedded -show- commands
will be used to convert non-integer as well as integer values to the
corresponding character strings.

The -find- Command

The -search- command discussed in Chapter 8 is character-string
oriented and will locate 'dog' even across variable or word boundaries:
the "d" might be at the end of one word and the "og" at the beginning of
the next word. The -find- command, in contrast, is word oriented. It will
find which word contains a certain number or character string:

find 372,nl,50,n125~

I (s;arti~ looking return the
f~~372 at nl through location

50 words

If n1 contains 372, n125 will return the value 0; if n2 is the first word
which contains 372, n125 will be 1; etc. If none of the 50 words contains
372, n125 will be set to -1. Notice that in -search- the return is 1, not 0, if
the string is found immediately. This is due to the fact that in character
strings we start numbering with character number 1.On the other hand,
here the first word is n(1+0).

Do not use v-variables in the first two arguments of -find- because
-find- makes its comparisons by integer operations. The first argument
can be a character string such as 'dog' or "dog". You can look at every 3rd
word by specifying an optional increment:

235

The TUTOR Language

236

find "cat",n1,50,n125,3
'-v-'

optional

This will look for "cat" in nl, n4, n7, etc., and n125 would be returned 0,
or 3, or 6, etc. Negative increments can be used to search backwards from
the end of the list.

You can also specify that a "masked equality search" be made:

find "cat",n1,50,n125,1,o777700\o
'-v-' mask

not optional

In this case, n125 will be zero if [(nl $diff$ "cat") $mask$ 0777700] is
zero. The mask specifies that only a part of the word will be examined.
The increment must be specified, even if it is one, to avoid ambiguity.

There is a -findall- command which will produce a list of all of the
locations where something was found, rather than producing locations
one at a time.

The -exit- Command

Suppose you are seven levels deep in -do-so That is, you have
encountered seven nested -do- statements on the way to the present unit.
The statement "exit 2" will take you out two levels. The next statement
to be executed is the statement which follows the sixth -do-. A blank -exit-
command (blank tag) takes you immediately to the statement following
the first -do-. (Such operations are occasionally useful.) Notice that
encountering a unit command at the end of a done subroutine will cause
an automatic "exit 1". It is superfluous to put "exit 1" at the end of a
unit, since this effect is automatic.

Manipulating DataBases 1 1

In this chapter we will discuss the tools available in TUTOR for
creating and using "data bases" (small or large blocks of data such as test
scores, population statistics, map coordinates, etc.). In the process of
discussing these tools we will also learn more about the internal workings
of the PLATO system.

The -common- Command

The "student variables" v1 through v150 are associated with the
individual student. It is possible to use "common variables" which are
common to all those students studying a particular lesson. These com-
mon variables can be used to send messages from one student to another;
to hold a bank of data used by all the students, to accumulate statistics on
student use of the lesson, to contain test items in a compact, standardized
form, etc.

As a first example of the use of the -common- command, let's count
the number of students who have entered our lesson. We will also count
how many of these students are female:

c::~ common 2 $$ two common variables
.~ define total=vc1,females=vc2

(Continued on the next page.)

237

The TUTOR Language

238

*
unit
calc
at
write
arrow
answer
calc
answer
no
write
endarrow
at
write

ask
tota I<:=totaI+ 1
1215
Are you a female?
1415
yes
females<:=females+ 1
no

Yes or no, please!

1615
There are «s,total~ students, of whom
«s,females~ are female.

The -common- command tells TUTOR to sct up two common variables,
vel and vc2, which we have defined as "total" and "females". These
common variables are automatically initialized to zero before the first
student enters this lesson. The first student increments "total" to one
("calc total<:=total+1") and may also increment "females". The second
student to enter the lesson causes "total" to increase to two and may also
change "females". Each student is shown the present values of "total"
and "females", which depend on what other students are doing. We must
use common variables vc1 and vc2 rather than the student variables vI
and v2 because the student variables cannot be directly affected by
actions of other students. Another way to see this is to point out that when
there are five students in this lesson, they share a single vel and a single
vc2, whereas they each have their own vIand their own v2: there are five
vl's and five v2's but only one vel and vc2.

Integer common variables are nel, nc2, etc., and indexed common
variables are written as vc(index) or nc(index).

The statement "common 2" tells TUTOR to associate a two-word
set of common variables with this lesson. For reference purposes, it is
good style to place tbe -common- command near the beginning of the
lesson. There can be only one -common- statement in a lesson. Like
-define-, -vocab-, and -list-, the -common- command is not executed for
each student. Rather, when TUTOR is preparing the lesson for the first
student who has requested it, a set of common variables is associated
with tbe lesson and all these common variables are initialized to zero.
Additional students entering the lesson merely share the common varia-
bles previously set up.

Suppose a class of fourteen students uses our Jesson from 10 a.m. to
11 a.m. The fourteenth student comes at 10:05 and gets a message on the

MANIPULATING DATA BASES

screen saying "There are 14 students, of whom 8 are female". As long as
the lesson is in active use, each new student who enters the lesson
increases "total" (vel). However, when a11the students leave at 11:'00, the
lesson is no longer in active use and will eventua11y be removed from
active status to make room for other lessons. When another class comes at
3:00 p.m., the lesson is not in active use and TUTOR must respond to the
first student's request for the lesson by preparing the lesson for active use.
In the preparation process the statement "common 2" tells TUTOR to
set up two common variables and initialize them to zero. The first student
to enter the lesson at 3:00 is told "There are 1 students, of whom 1 are
female". She is not told "There are 15 students, of whom 9 are female",
despite the fact that the previous student (at 10:05 that morning) had been
told there were 14 students, 8 female. The "common 2" statement will
cause the common variables to be zeroed every time the lesson is
prepared for active use.

The type of common which is set up by the statement "common 2"
is ca11eda "temporary common". It lasts only as long as the lesson is in
active use, and its contents are initialized to zero whenever the lesson is
moved from inactive to active status. Temporary common can be used for
such things as telling the students how many students are present, what
their names are, and whether a student at another terminal who has
finished a particular section of the lesson is willing to help a student who
is having difficulties. Messages can be sent from one student to another
through a temporary common by storing the message in the common area
with an identifying number, so that the appropriate student can pick up
the message and see it with a -showa-. The lesson simply checks
occasiona11y for the presence of a message.

When,a student signs out you usua11ywant to change the temporary
common in some way. For example, if you are keeping a count of the
number of students presently using the lesson, you increase the count by
one when a student signs in and you decrease the count by one when the
student leaves. The -finish- command lets you define a unit to be executed
when the student presses shift-STOP to sign out:

finish decrease

unit
calc

decrease
count¢:count-1

In this case unit "decrease" will be done each time a student signs out.
Norma11y the -finish- command should be put in the "ieu". As with
-imain-, the pointer set by the -finish- command is not cleared at each new
main unit. A later -finish- command overrides an earlier one, and

239

The TUTOR Language

"finish q" or a blank -finish- statement will clear the pointer. Like all
unit pointer commands, -finish- can be conditional. Only a limited
amount of processing is permitted in a -finish- unit to insure that the
student can sign out promptly.

We can keep a permanent, on-going count of students who enter the
lesson by using a "permanent common". Instead of writing "common
2", we write "common italian,counts,2", where "italian" is the name of
a permanent lesson storage space and "counts" is the name of a common
block stored there. This is the same format used for character sets (the
-charset- command) and micro tables (the -micro- command). When the
common block is first set up in the lesson space, its variables are
initialized to zero. Let's suppose that the fourteen students who come in
at 10:00 a.m. are the very first students ever to use our lesson. The
statement "common italian,counts,2" will cause TUTOR to fetch this
(zeroed) common block from permanent storage. As before, the four-
teenth student arrives at 10:05 and is told "There are 14 students, of
whom 8 are female". At 11:00 a.m. these students leave and our lesson is
no longer in active use. At some point, room is needed for other active
lessons (and commons), at which point our permanent common, with its
numerical contents of 14 (students) and 8 (females) is sent back to perm-
anent storage. At 3:00 p.m. the first student (a female) of the afternooI).
class causes TUTOn to prepare the lesson and retrieve the permanent
common from permanent storage without initializing the common varia-
bles to zero. The result is that she gets the message "There are 15
students, of whom 9 are female". (There is an -initial- command which
can be used to define a unit to be executed when the first student
references the common. This makes it possible to perform initializations
on a permanent common.)

The key feature of permanent common is that it is retrieved from
storage when needed and returned in its altered state to permanent
storage when the associated lesson is no longer active. In our case, we
could enter the lesson months after its initial use and see the total number
of students who have entered the lesson during those months. Other uses
of permanent common include the storage of data bases accessed by the
students, such as census data in a sociology course or cumulative
statistical data on student performance in the course.

The Swapping Process

Before discussing additional applications of common variables, it is
useful to describe the "swapping" process by which a single computer
can appear to interact with hundreds of students simultaneously. The

240

MANIPULATING DATA BASES

computer actually handles students one at a time but processes one
student and shifts to another so rapidly that the students seem to be
serviced simultaneously. In order to process a student, the student's
lesson and individual status (including the variables vi through v150)
must be brought into the "central memory" of the computer. After a few
thousandths of a second of processing, the student's modified status is
transferred out of the central memory (to be used again at a later time) and
another student's lesson and status are transferred into central memory.
This process of transferring back and forth is called "swapping," and the
large storage area where the lessons and status banks are held is called the
"swapping memory." The swapping memory must be large enough to
hold all the status banks and lessons which are in active use; that is, in
use by students presently working at terminals. It is notnecessary for the
swapping memory to also hold the many lessons not presently in use nor
the status banks for the many students not using the computer at that
time. These inactive lessons and status banks are kept in a still larger
"permanent storage" area. (See Fig. 11-1.)

Q!l~ leeeon.
Q~ ..tudent
..tatu ..bank.

Central
memoryPermanent ..toraie

Thou ..and", of in-
act ive Iee..om5
and inactive
student ..tatu ..
bank ...

Swapp ino: Iooi---=--+I
memory

Hundreds of active
lessons and active
..tudent ..tatu ..
bank ...

Fig. 11-1.

241

The TUTOR Language

242

When a student sits down at a terminal and identifies herself as "Jane
Jones" registered in "frenoh2a", her status bank is fetched from perma-
nent storage to see what lesson she was working on and where in the
lesson she left off last time. If the lesson is already in the swapping
memory (due to active use by other students), Jane Jones is simply
connected up to that lesson, and, as she works through the lesson, her
lesson and her changing status bank will be continually swapped to
central memory. If,on the other hand, the required lesson is not presently
in active use, it must be moved from permanent storage to the swapping
memory. (This involves a translation of the TUTOR statements into a
form which the computer can process later at high speed.) This fetching
of the inactive lesson from permanent storage to prepare an active version
in the swapping memory will typically be done once in a half-hour or
more often as the student moves from one lesson to another. In contrast,
the swapping of the active lesson to central memory happens every few
seconds as the student interacts with the lesson. Therefore, the swapping
transfer rate must be very high (whereas a low transfer rate between
permanent storage and the swapping memory is adequate).

When Jane Jones leaves for the day, her status bank is transferred
from the swapping memory to permanent storage. This makes it possible
for her to come back the next day and restart where she left off.

The question arises as to why there are three different memories:
central memory, swapping memory, and permanent storage. For example,
why not keep everything in the central memory where students can be
processed? It turns out that central memory is extremely expensive, but
permanent storage in the form of rotating magnetic disks is very cheap.
Why not do swapping directly between permanent storage and central
memory? The rate at which lessons can be fetched from permanent
storage is much too slow to keep the computer busy: the computer would
handle only a small number of students because a lot of time would be
wasted waiting for one student to be swapped for another. If the cost of
the computer were shared by a small number of students, the cost would
be prohibitively high. In order to boost the productivity of the computer,
a special swapping memory is used which permits rapid swapping. This
minimizes unproductive waiting time and raises the number of students
that can be handled. The swapping memory is cheaper than central
memory but considerably more expensive than permanent storage.

There is, therefore, a hierarchy of memories forced on us by
economic and technological constraints. The expensive, small central
memory is the place where actual processing occurs, and there is never
more than one student in the central memory. Material is swapped back
and forth to a large medium-cost swapping memory whose most impor-
tant feature is a very high transfer rate to central memory. Permanent
storage is an even larger and cheaper medium for holding the entire set of

MANIPULATING DATA BASES

lessons and student status banks. It has a low transfer rate to the
swapping memory.

Common Variables and the Swapping Process

Now it is possible to describe more precisely the effect of a -common-
statement in a lesson. Just as an individual student's lesson and status
bank (including the student variables vI through v150) are swapped
between central memory and the swapping memory, so a set of common
variables associated with the Jesson is swapped between central memory
and the swapping memory. There is in central memory an array of 1500
variables, called vel through vel500, into and out of which a set of
common variables is swapped. As long as the -common- statement
specifies a set of no more than 1500 common variables, this set will
automatically swap into and out of the central memory array vel to
vel500. (See Fig. 11-2.) (There is a -comload- command which can be
used to specify which portions of a common to swap if the common
contams more than the 1500 variables which will fit into central memo-
ry.) All 15'00variables in the central memory array are set to zero before
bringing a lesson, status bank, and common into central memory, so that
any of these variables not loaded by the common will be zero.

Central memor
student Bi 11
C_=::J

student Nei I
C -] le550n ·area

vel

thr'ough

~a common containin&
up to ISii variables

velSii

Fig. 11-2.
243

The TUTOR Language

Note that the student status banks and commons are swapped in and
out of central memory in order to retain any changes made during the
processing in central memory. On the other hand, lessons are brought
into central memory but are not sent back since no changes are made to
the lesson. (A lesson only has to be copied into but not out of central
memory.) The separation of the modifiable status banks and commons
from the unchanging lessons makes it possible for a single copy of a
lesson to serve many students.

It is dangerous to use vc-variables without a -common- statement or
to use vc-variables outside the range loaded by the common (e.g.,
referring to vc3 when there is a "common 2" statement in the lesson).
For example, consider this sequence in a lesson which has no -common-
statement:

calc vc735<:=18.34
pause 2
show vc735

This will show 0, not 18.34. The "pause 2" statement causes this
student's material to be swapped out to the swapping memory for two
seconds while many other students are processed. When the student is
swapped back into central memory, all the vc-variables are zeroed. As a
matter of fact, vc735 may temporarily take on many different values
during those two seconds as different students are processed. On the
other hand, a "common 800" would insure that vel through vc800
would be saved in the swapping memory and restored after two seconds,
so that the "18.34" stored in vc735 would again be available to be shown
(unless it had been changed by a student using the same common who
was processed during the two-second wait). Similarly, because the
student variables v1 through v150 are part of the swapped student status
bank, the sequence:

244

calc v126<:=3.72
pause 2

MANIPULATING DATA BASES

show v126

will correctly show "3.72". The contents of the student variables cannot
get lost in the swapping process because these variables are saved in the
swapping memory and restored to central memory the next time this
student is processed.

The fact that common variables are shared by all students studying
the lesson is extremely useful but can cause difficulties if you are not
careful. Suppose you want to add up the square roots of the absolute
values of vc101 through vc1000:

calc total<:=0
doto 8sum,index<:=101,1000

tota I<:=totaI+[a bs(vc(index))]·5
8sum
show total

This iterative calculation will take longer than one "time-slice" (the
computing time TUTOR gives you before interrupting your processing to
service other students). You are swapped out and will be swapped back
into central memory later to continue the computation. It might take
several time-slices to complete the computation, and in between your
time-slices other students are processed. This time-slicing mechanism
insures that no one student can monopolize the computer and deny
service to others. Suppose two students, Jack and Jill, are studying this
lesson and sharing its common. Suppose that Jack has reached the part of
the lesson that contains the -doto- shown above. If, at the same time, Jill
runs through calculations that modify vc101 through vc1000, her modifi-
cations will be made during the interruptions in Jack's processing. The
total that Jack calculates will, therefore, be based on changing values and
will not be the total at a particular instant. Jack calculates a partial total,
Jill makes some changes, Jack continues to do more calculations in the
-doto-, then Jill makes further changes, etc. At the end Jack has a peculiar
total made up of partial totals made at different times. Even more drastic
things will happen if "total" is itself a common variable: Jill might do
"total<:=0"right in the middle of Jack's summation!

245

The TUTOR Language

If it is necessary to get an accurate total at a specific instant, it is
necessary to lock out Jill and other students from modifying common
until the totaling is complete. This is done by doing a "reserve common"
statement before starting Jack's calculation and a "release common"
statement after the calculation is complete. The -reserve- command
checks to make sure no other student has reserved the common, and then
reserves the common. The system variable "zreturn" is set to -1 if the
-reserve- was able to get control of the common. Otherwise "zreturn" is
set to the station number of tbe student who had previously reserved the
common. Normally, if you can't get the common, you loop waiting for the
other person to do a "release common":

8again
reserve common
branch zreWrn,x,8again

Notice that you must reserve and release common for Jill as well as for
Jack (doing it for one but not the other will not prevent the other from
looking at or changing the common).

Don't forget tbe "release common" for a student, or other students
will get hung up waiting for the common to be available. When a student
who has reserved a common signs out of the lesson, TUTOR automatical-
ly releases the common.

Note that a lock is certainly needed if different students are storing
information into the same area of common. There is often no problem
with having different students reading information out of the same area
of common and no problem when storing information in different areas of
common. Logical conflicts are most serious when modifying the same
part of common. However, even in this case there are usually no
problems. In the example of counting the number of students in the
lesson, we simply execute "vc=vcl + 1", which cannot causc any prob-
lems since all of the modifications are completed in one simple step.
(Note, however, that a very complicated -calc- statement, particularly one
involving multi-element array operations, may take more than one
time-slice to be performed.)

The -storage- Command

246

In certain applications 150 individual student variables are not
sufficient, even when using segmented variables. It is possible to set up

MANIPULATING DATA BASES

extra storage of up to 1500 variables to give a total of 1650 variables that
are individual, not shared in a common. A "storage 350" statement will
cause a storage block of 350 variables to be set up in the swapping
memory for each student who enters the lesson. Like -common-, the
-storage- command is not "executed" (it is rather an instruction to
TUTOR to set up storage when the student enters the lesson). Like
temporary common, the storage variables are zeroed when the storage is
set up.

A -transfr- command can be used to move common or storage
variables from swapping memory into the student variables or into the
"vc" area. Usually, however, common is loaded automatically into the
"vc" area. If the common is larger than 1500 variables, a -comload-
command must be used to specify which part of this large common is to
be swapped into and out of which section of vel through vel500. In the
case of -storage-, there is no automatic swapping. Instead, a -stoload-
command is used to specify what parts of the storage are to be moved into
what area of the "vc" variables. Here is a typical example:

common
storage
stoload

1000
75
vc1001,1,75

The common will be automatically swapped in and out of vel through
vel000. The 75 storage variables will be swapped in and out of vel001
through vel075. It is good form to define all these matters:

define comlong = 1000,stlong =75
stbegin=vc(comlong+ 1)
(etc.)
comlong
stlong
stbegin,1,stlong

common
storage
stoload

calc stbeg in<:=37.4

While -common- and -storage- are "non-executable" commands, -com-
load- and -stoload- are executable, so that swapping specifications
can be changed during the lesson.

The student's current variables vI through v150are saved with other
restart information when he or she signs out. Therefore, when the student
signs in the next day, these variables will have the values they had when
the student left. Storage variables are not saved, however. All storage
variables are initialized to zero when the storage block is set up upon

247

The TUTOR Language

248

entry into the lesson, as with temporary common. If it is necessary to file
away more than the standard 150 student variables, you could split up a
common into different pieces for individual students. For example, if you
need to save 200 extra variables for no more than 20 students, you could
split up a 4000-variable common into 20 pieces each containing 200
variables. An alternative is to use "dataset" operations, which permit you
to directly control the transfer of blocks of individual data between the
permanent storage (magnetic disks) and the swapping memory.

Using "data sets"

A PLATO "dataset" is a file of records kept in the permanent
(magnetic disk) storage. You can write some data out to the 5th record of
the dataset, then gct it back months later simply by reading back the 5th
record of that dataset. Each record is made up of many words, and the
record word size is specified at the time the dataset is created. (Currently
the minimum record size is 64 words.) One record might, for example,
hold exam scores for a particular student.

In order to perform operations on a dataset, you first must execute a
-dataset- command to tell PLATO which of your datasets you are going to
be working on at the moment. You can then execute any number of
-dataout- commands to send data out to the dataset, and any number of
-datain- commands to read such information back. You can use a -reserve-
command to reserve specific records, similar to using a "reserve com-
mon". You must use a -release- command to permit others again to
manipulate those records. (For details, see the PLATO on-line "aids".)

Sorting Lists

When manipulating a data base it is often necessary to sort a list of
items into alphabetic or numeric order. The -sort- (numeric) and -sorta-
(alphabetic) commands will transform a disordered list into a sorted list.
These commands will also sort an associated list of items at the same
time. For example, you might have student names in one part of a
common, and corresponding grades in another part of the common. You
could use a -sorta- command to place the names in alphabetical order, and
at the same time you could have the -sorta- command similarly re-order
the grades to correspond with the altered order of the students. (See the
PLATO on-line "aids" for details.)

Miscellany 12

This chapter will acquaint you with additional features of TUTOR
and PLATO. See Appendix A for sources of additional information.

Other Terminal Capabilities

We have emphasized the keyboard and plasma display panel as the
main input and output devices used in communicating with the student.
Other devices which may be used include a projector of color photo-
graphs, a touch panel, a random-access audio playback device, and other
specialized input-output devices. All of these terminal-associated devices
are easily managed by TUTOR.

The plasma display panel is Rat and transparent, which makes it
possible to project photographs on the back, superimposing color photo-
graphs with plasma-panel text and line drawings. There exists a micro-
fiche projector for the PLATO terminal which will project any of 256
color photos, with fractional-second access time to any of these 256
pictures. (A "microfiche" is a sheet of film carrying many tiny pictures.)
Microfiches can be made from a set of ordinary 35mm slides. Students or
teachers can insert the appropriate microfiche in the terminal for the
subject to be studied. The -slide- command selects any of the 256 photos:
"slide 173" will project the 173rd photo. Additional options on the

249

The TUTOR Language

250

-slide- command permit the independent control of a shutter in the
projector.

The touch panel is a device which puts a grid of 16 vertical and 16
horizontal infrared light beams just in front of the plasma panel. When a
student points at the panel, he breaks a horizontal and vertical beam. The
information as to which beams were broken is sent to the computer as a
"key" and the lesson can use this information to move a cursor, choose a
topic pointed at, etc.

We discussed in Chapter 8 how to know where the student touched
the screen. Another way is to use the information in the system variable
"key", which contains the last "key" input from the student, whether it
came from the keyboard, the touch panel, or some other external input
device. Here is a unit which will analyze the inputs:

unit
next
enable
pause
goto
write
unit
write

*
unit
calc

write

*
unit
write

getkey
getkey

(key ars 8),x,keyset,touch,extin,x
Impossible!
keyset
You pressed a key
on the keyboard.

touch
x¢:{key ars 4)$mask$ 017
y¢:{key $mask$ 017)
You touched location
x=«s,x» ,y= «s,y».

extin
The external input
was «s,key $mask$ 0377»

The -enable- command permits touch inputs as well as inputs from any
device connected to the external input connector at the back of the
PLATO terminal. (The external input device might be a temperature
sensor, an analog-to-digital converter, etc.) Without an -enable- command
these inputs are ignored. A -disable- command will also cause inputs to
be ignored. The system variable "key" contains a 10-bit integer (see the
section on bit manipulations in Chapter 9): the most significant or
left-most two bits identify the source of the key (0 for keyset, 1 for touch
panel, 2 for external input), and the least significant or right-most eight

bits contain the actual data (which keyset button, which touch panel
beams, what external data). In the case of the touch panel, the eight data
bits contain four bits of x and four bits of y to specify a position. A
succession of external inputs can also be retrieved with a single -collect-
command.

If an -enable- command is placed just after an -arrow-, touch inputs
can be accepted. There is a -touch- judging command whose tag specifies
a screen location (and optionally a spatial tolerance). The -or- command is
particularly useful here:

arrow
enable
touch
or
answer
write

2513

1215

book
Yes, "Iibro" means book.

The student will get the same message whether he or she types "book" or
points at a picture of a book displayed at location 1215. (The -or-
command can be used to make synonomous any judging commands. The
system variable "anscnt" will be the same for all judging commands
linked by -or-.)

There is a random-access audio device which stores twenty minutes
of speech, music, or other sounds. Segments as short as one-third second
can be accessed in a fraction of a second, no matter where the segment is
located on the twenty-minute magnetic disk. As with microfiche, students
can change the disks themselves. There is a -play- command to choose a
section of the disk to play music or talk to the student.

Other devices can be connected to the external output connector at
the back of the PLATO terminal and controlled with the -ext- command.
The -ext- command can send up to sixty 16-bit quantities per second to a
device. Among the interesting devices using this capability is a "music
box" that plays four-part hannony.

Student Response Data

A crucial aspect of TUTOR on the PLATO system is that student
response data can be collected easily to aid authors in improving lessons.
Detailed information can be collected: unanticipated "wrong" responses
(which may have been correct but inadequately judged), requests for

MISCELLANY

251

The TUTOR Language

252

help, words not found in a -vocabs-, etc. Summary information can also
be collected: amount of time spent in an area of a lesson, number of errors
made, number of help requests, etc. These detailed and summary data
provide an objective basis for revising lessons.

A -dataon- command in a lesson turns on the automatic data
collection machinery. Students registered in courses with associated
response data files will have their responses logged in their data files.
When registering students in a course, specific data collection options can
be chosen. For example, one might collect only responses judged
"no" (unanticipated incorrect responses). Anticipated correct responses
(judged "ok") and anticipated incorrect responses (judged "wrong")
would not be logged. This is often done because the anticipated re-
sponses are precisely those for which the lesson is already replying in a
detailed, appropriate manner to the student. Here we see the difference
between judge "no" (unanticipated) and judge "wrong" (anticipated). In
this connection, -wrong-, -wrongv-, and -wrongu- make a "wrong"
judgment, whereas the -no- command makes a "no" judgment.

The -area- command is used to divide a lesson into sections, each of
which will produce an area summary in the data file. Each time the
student encounters another -area- command, a summary of the previous
area is placed in the data file. The area summary includes student name,
area name, amount of time spent in the area, number of -arrow-s, number
of ok/wrong/no responses, number of helps requested and found, etc.
This summary data makes possible a statistical treatment of lesson data
which can pinpoint weak areas.

The -output- and -outputl- commands permit you to write your own
information and messages into the datafile. This supplements the auto-
matic data logging invoked with -dataon- and -area-.

While PLATO provides a standard mechanism for looking through
data files (including sorting the data), you can also read back this
information and process it yourself. For example, the -readd- command
will read area summaries or -outputl- information from a datafile previ-
ously specified by a -readset- command.

Additional Tools for Teaching Foreign Languages

Usually in a lesson on a language such as Russian, which uses a
special alphabet, the student will answer some questions in English and
some questions in the foreign alphabet. The responses in the foreign
alphabet require a "force font", or a "force font, left" for leftward-
going languages such as Arabic, Hebrew, and Persian. Sometimes a

"force micro" option will also be required in order to re-order the
keyboard. Since there may be several things different about the two kinds
of -arrow-s, it is convenient to have an alternate -arrow- command, which
is named -arrowa-.

The -arrowa- command can cue the student differently, because you
can alter the arrowhead displayed by -arrowa- by using the -arheada-
command. The -arheada- command is similar to the -okword- and
-noword- commands (the tag is what will be shown). Just as an -iarrow-
unit is associated with the -arrow- command, so the -iarrowa- command
can be used to specify a unit associated with the -arrowa- command. Here
is a typical setup:

arheada ...
iarrow eng Iish
iarrowa persian

~ (in an -imain- unit'

askl
5 118; 1 5 118; 1 54.0'; 5 1.0'
1812
What is this fi~ure?
21815
trian~le

unit
draw
at
write
arrow
answer
*unit
draw
at
write
arrowa 2.0'3.0'

ask2
5118; 15118: 15418:5118
1833

~ 1<," . I...r- 8:'

answer ~
*unit
force
okword
noword
*unit
force
okword
noword

enlilish
clear
ok
no

persian
clear, font, left,micro

Fig. 12-1.

MISCELLANY

253

The TUTOR Language

254

Unit "ask2" has an -arrowa- command, which is associated with unit
"persian", the unit named in the earlier -iarrowa- statement. Unit
"persian" clears out any existing -force- options and sets up the appropri-
ate typing conditions for the student. Unit "persian" also redefines the
words to be shown for correct and incorrect responses. The -answer-
command in unit "ask2" has the Persian for triangle. The student will see
a "-" instead of a " ~" as a cue to give a response, thanks to the -arheada-
command. On the other hand, the standard -arrow- command in unit
"ask!" has associated with it the -iarrow- unit "english", which clears the
-force- options and sets the "ok" and "no" words to English words.

While this machinery is particularly valuable in language lessons, it
is also useful whenever your -arrow-s fall into two rather different
categories. An example might be a physics lesson in which some -arrow-s
require sentence responses and other -arrow-s require algebraic or
numerical responses.

Some additional TUTOR commands which are particularly help-
ful in foreign language lessons include -change-, -getword-, -getloc-,
-ge.tmark-, and -compare-. As an example of the -change- command, the
statement "change symbol comma to word" (which must be placed in the
initial entry unit) will change the normal meaning of a comma as an
ignorable punctuation mark, so that the comma will be treated as a
separate word. This is useful when teaching punctuation, where you
want to check specifically for commas. The -getword- command is similar
to -storen- and is used to pull apart the student's response into separate
words. The -getloc- command will tell you where a particular student
word is on the screen, so that you could draw a box around that word. The
-getmark- command gives you information on how TUTOR marked up
the student's response, including whether a word was incorrect, mis-
spelled, or out of word order. The -compare- command permits you to
check a student's word against a stored list of words (in a common, for
example), including spelling aspects.

Routers and -jumpout-

A lesson can be designated as a "router" which routes students
through the many lessons making up a complete course. A router is
associated with a course. Students registered in a course which uses a
router will upon sign-in be sent first to the router, not to the lesson
specified by the restart information. A typical router might ask the
student, "Do you want to resume studying the lesson you last worked
on?" If the student says yes, the router executes a "jumpout resume",
which means "jumpout" of this lesson into the lesson mentioned in the

tag, with "resume" having the special meaning "resume at the restart
point". If the student does not want to resume, the router might offer the
student an index of available lessons. Suppose the student chooses a
lesson on the list whose name is "espnum". Then the router does a
"jumpout espnum" to take the student to that lesson. (The -jumpout-
command can be conditional.) Upon completion of lesson "espnum", (by
"end lesson") the student is brought back into the router. If the lesson
executed a -score- command, the router can use the corresponding value
of system variable "lscore" to help decide how to route the student. The
router might ask the student what he or she wants to do next, or the router
might immediately take the student to an appropriate lesson.

Generally speaking, -jumpout- commands should be placed only in
routers, not in instructional lessons. Following this practice insures that
lessons can be plugged into routers on a modular basis. An exception
exists in the case where one instructional package is spread over two or
three physical lessons, in which case -jumpout- is used to connect the
lessons.

A router can use up to fifty "router variables" (vrl through vr50)
which are not affected by the instructional lessons. These can be used to
keep track of which lessons have been completed, how many times they
have been reviewed, how much time was spent in each lesson, etc.

Instructor Mode

Authors write and test lessons, and students study these lessons.
Instructors choose lessons from the library of available lessons to make
up a course for their students. Instructors also register students, monitor
their progress, leave messages for the class or for individual students, etc.
There is an "instructor mode" which makes it easy for instructors to do
these things without knowing the TUTOR language. The instructor mode
is based on a router coupled with a mechanism for setting up a roster of
students. The options available through this router are sufficiently
flexible to make it unnecessary in most cases to write specialized routers.

Special IItermsll

Authors have a number of special "terms" to help them in curricu-
lum development. If you press TERM and type "step", you can step
through your lesson one command at a time. (Acontinued -calc- counts as
one command.) This is extremely helpful in tracking down logical errors
in a lesson. After each step, you can check the present value of student

MISCELLANY

255

The TUTOR Language

variables. There is also a -step- command which will throw the lesson
into the step mode. The step features are operative only for authors
testing their own lessons.

"TERM-cursor" provides you with a cursor which you can move
around the screen using the "arrow" keys. Press "f" for fine grid or "g"
for gross (coarse) grid. Also press "f" or "g" to update the display of the
current cursor location. This facility is useful for deciding what changes
to make in the positioning of displays on the screen.

"TERM-consult" notifies PLATO consultants of your request for
help. When a consultant becomes available, he or she will talk to you by
typing at the bottom of your screen. The consultant's screen has the same
display you have on your screen. It is as though the consultant were
looking over your shoulder as you demonstrate the problem. You can talk
to the consultant by typing sentences at -arrow-s or by hitting TERM and
typing. (If you press NEXT, and you have typed eight or fewer charac-
ters, your sentence will be taken as a -term- to look for in the lesson.
Otherwise your line is erased so that you can type some more.) The
consultants not only know TUTOR well but they have also had a great
deal of experience in helping authors.

"TERM-talk" asks you for the name of the person you want to talk to,
then pages that person if the person is presently working at a PLATO
terminal. The person called accepts the call by hitting TERM and typing
"talk". The two of you can then talk to each other at the bottom of the
screen, but neither of you can see what is on the rest of the other person's
screen. If you want the other person to see all of your screen, press
shift-LAB, which puts you into a mode similar to TERM-consult.

"TERM-calc" provides a convenient one-line desk calculator at the
bottom of the screen. Authors get normal, octal, and alphanumeric
results. To avoid confusion, students who use TERM-calc are not shown
the octal and alphanumeric displays.

256

Appendices
Appendix A. Where to get further information

Appendix B. List of TUTOR commands

Appendix C. List of built-in -calc- functions

257

Appendix A
Where to Get Further Information

The document "Summary of TUTOR Commands and System Varia-
bles" by Elaine Avner lists each TUTOR command, gives the basic form
of the tag, and notes any restrictions such as maximum number of
arguments or maximum length of names. Lesson "aids" available on
PLATO provides detailed interactive descriptions of each command, as
well as a wealth of other information useful to authors.

Lesson "notes" on PLATO provides a forum for discussing user
problems. You can write notes to ask questions or to suggest new features
that would be helpful in your work. You can read notes written by other
users, including replies to your notes. Replies to programming questions
generally appear within one day. (For faster service, use TERM-consult.)
An extremely important section of "notes" is the list of announcements of
new TUTOR features. Check this section regularly for announcements of
new TUTOH capabilities. The announcements are followed within a few
days by detailed descriptions in "aids".

Sometimes "notes" will announce a change in the TUTOR language
involving an automatic conversion of existing lessons. For example, at
one time there were several different commands (-line-, -liner-, -figure-,
and -figuref-) which did what -draw- now does. When -draw- was
implemented, all existing PLATO lessons were run through an automatic
conversion routine to change the old commands into appropriate -draw-
commands. It is probable that other such refinements will be made in the
future. Therefore, be sure to read notes and aids regularly.

258

Appendix B
List of TUTOR Commands

Display Calculations Sequencing Student Responses Other

at,atnm gorigin calc unit arrow,endarrow pause
write axes calcc entry iarrow catchup
writec bounds cales nextnow arrowa time
erase scalex define next,next1 iarrowa step
eraseu sealey do back,back1 long keytype
size Iscalex exit help,help1 jkey group
rotate Iscaley dote data,data1 copy,edit collect._-~-----
mode labelx goto lab,lab1 force inhibit
charset labely branch term answer,wrong enable
lineset markx transfr base answerc,wrongc disable~-----
micro marky zero end concept,m iscon dataon
char gat,gatnm set restart vocabs,vocab area---~--" ----
plot graph randu imain Iist,endings output
show hbar setperm finish ansv,wrongv outputl
showa vbar randp ansu,wrongu readset
showe gdraw remove join .exact,exactc readd~-,---
showo gbox modp!lrm exit touch,touchw dataset
showt gvector pack,packc goto ok,no,ignore datain

_ shoYl'~ gcircle move jump ans dataout
draw gdot search jumpout match
box polar compute eraseu specs
vector delta itoa nextop,next1op or---
circle funct clOck backop,back1op storea---
circleb slide name helpop,help1op storen
dot play course dataop,data1op store
window ext date labop,lab1op storeu------ _w ___ ~ __ ~_

rorigin day termop judge
rat,ratnm find join
rdraw findall ~bump-
rbox common put,putd,putv
rvector com load loada--~---
rcircle storage okword,noword
rdot stoload eraseu

initial getword
reserve getloc
release getmark
sort compare
sorta change

259

The TUTOR Language

260

Additional TUTOR Commands Not Discussed in
This Book

abort abort normal updating of common or student record
add1 add one to a variable
allow allow an instructional lesson to use router common
altfont use alternate font for all writing
backgnd run lesson at lower priority
chartst check whether charset already loaded
close like -Ioada- but takes one character per variable
dataoff turn off student response data collection
delay timed blank output for precise display timing
exactv character string match to student response
foregnd run lesson at normal (non-background) priority
iferror specify unit to go to if -calc- error
lesson sets "Idone" to inform router .about lesson completion
open like -storea- but stores one character per variable
press presses a key for the student
readr read a student record for data processing
record record a message on audio device
route specify router units for end of instructional lessons
routvar set up router variables
stop like -back- but for the STOP key
sub1 subtract one from a variable
tabset set up tabs for TAB key
timel set a time within a lesson
timer router sets a time for a lesson to finish
use use sections of another lesson to prepare this lesson

Appendix C
List of Built-in-Calc-Functions

sin (x)
cos(x)
arctan(x)

sine
cosine
arctangent

Angles are measured in radians. For example, sin(45) means sine of 45
radians, but sin (45°) means sine of 45 degrees (0.707). The degree sign
(MICRO-o) converts to radians. Similarly, arctan(l) is .785 radians,
which can be converted to degrees by dividing by 1°, the number of
radians in one degree; arctan(l)/lo is 45. Using the degree sign after a
number is equivalent to multiplying the number by (2Tf/360). Tf
(MICRO-p) is 3.14159

sqrt(x)
log (x)
In(x)
exp(x)

abs(x)
round(x)
int(x)
frac(x)
sign(x)

=,"',<,>,:5,2:
not(x)
X and y
X or y

X cls y
X ars y
x $mask$ y
x $union$ y
x $diff$ y
bitcnt(x)

square root; can also be written X'/2 or x·5
logarithm, base 10
natural logarithm, base e
ex

absolute value; abs(~7) is 7
round to nearest integer; round(8.6) is 9
integer part; int(8.6) is 8
fractional part; frac(8.6) is 0.6
+1 if x>0, 0 if x=0, -1 if x<0

produce logical values (true=-1 ,false=0)
inverts logical values (truefalse)
true if both x and yare true
true if either x or y is true (or both)

circular left shift x by y bit positions
arithmetic right shift x by y bit positions
sets bits where both x and y have bits set
sets bits where either x or y has bits set (or both)
sets bits where x and y differ (exclusive union)
counts bits

The logical operators (=, *, <, >, :5 and 2:)consider two quantities to be
equal if they differ by less than one part in 1011 (relative tolerance) or by

261

The TUTOR Language

262

an absolute difference of 10-9• One consequence is that all numbers
within 10-9 of zero are considered equal. Similarly, "int" and "frac"
round their arguments by 10-9 so that int(3.999999999) is 4, not 3, and
frac(3.999999999) is 0, not 1. This is done because a value of 3.999999999
is usually due to roundoff errors made by the computer in attempting to
calculate a result of 4.

System Variables

DISCUSSED IN
THIS BOOK

NOT DISCUSSED IN
THIS BOOK

anscnt
args
clock
formok
jcount
key
opcnt
spell
station
varcnt
vocab
where
wherex
wherey

baseu
capital
dataon
entire
error
emype
extra
judged
Idone
Iscore
Istatus
mainu
mode
nhelpop
ntries
order
phrase
size
user
wcount
zreturn

aarea
aarrows
ahelp
ahelpn
aok
aokist
asno
aterm
atermn
atime
auno

The third column consists of counters associated with the
-area- command.

There are some additional system variables available for special purpos-
es. See the on-line PLATO aids for information.

Index

-abort- Appendix B
absolute graphics commands 189, 190
accent marks 10
ACCESS key 175, 182
active lesson 239
-add1 - Appendix B
aids Appendix A
algebraic and numerical judging' 126

algebraic 128
judging equations 131
warning about (l!2X) 132, 135

with scientific units 133
warning about (3+6cm) with -storeu-

135
-allow- Appendix B
alphanumeric information

-storea- 104
-showa- 53, 104
10 characters per variable 105, 156, 162,

220
difference from numeric 105, 220
alphanumeric to numeric conversion

231,235
alternate font 175

unaffected by -size- and -rotate- 179
using -char- and -plot- 199

-altfont- Appendix B
and (and) logical operator 81
And(array) 216
Anderson, B. 4
animations 28

use of iterative -do- 49
smooth animations 178

-ans- 154
anscnt system variable 113

zeroed when judging starts and by
-specs- 113

zeroed by judge rejudge 120
not changed for synonomous -concept-s

116
cursor moving 122
with -or- 251

-ansu- 135
warning about (3+6cm) with -storeu- 135

-ansv- 126
-wrongv- 126
in arithmetic drill 127
with opcnt 127
specs noops,novars 128
concept/vocabs similar to ansv/define

128
algebraic judging 128

263

Index

-ansv- (Cant.)
warning about (l/2x) 132

affected by -bump-, -put-, and judge re-
judge 232

-ansva- Appendix B
-answer- 16

markup of errors in student response 17
with numbers 106

Limitations 106
notoler, nodiff 107

with phrase (Santa*Maria) 17
specs 107
caps in tag with specs okcap 107
no punctuation marks in tag 108

punctuation ignored in student re-
sponse 108

with -list- 110
-answer- useful in limited context III

see -concept- 111
interaction with -concept- 114
with negation 125
with blank tag 126
-exact- compared with -answer- 136
conditional -answer- (-answerc-) 137
using -put- to find pieces of words 159

-answerc- 137
Arabic 177,253
-area-252
args system variable 55
arguments

passing arguments to TUTOR com-
manas 53

passing arguments to subroutines 53
args system variable 55
warning to use different variables in

different subroutines 56
omitted arguments 55
order of passing 54
passing arguments in conditional -do-

79
passing arguments in -goto- 90

can be complicated expressions 55
arc of a circle 26
-arheada- 253
arithmetic drill 127
arithmetic right shift ars 224

with negative numbers 228
arrays 214 (also see indexed variables 204)

array operations 216
matrix multiplication (dot product),
vector product, sum, Prod, Min,
Max, And, Or, Rev, Transp

264

arrays (Cant.)
offset arrays 217
vertically segmented arrays 231

arraysegv 231
-arrow- 15, 96 (also see -arrowa- 253)

multiple -arrow-s in a unit 21, 98
displays arrowhead on screen 16, 141

inhibit arrow 122
location in unit remembered 96, 141
restarting at -arrow- for each response

97, 141
satisfy all -arrow-s before leaving main

unit 97, 142
search for additional -arrow-s 97, 99, 142

-goto- skipped 147
delimits preceding -arrow- 97, 99, 142
changes search state to regular state 99,

142
sets default long 104
summary of processing stages 141

interactions with other commands 149
sets default long, jkey, copy 1.50

rules for attaching units containing
-arrow- 100, 148

merely collect response 164
sets left margin 172
with response erasing 192
-enable- for touch input 250

-arrowa- 253
different arrowhead from -arheada- 253
associated -iarrowa- 253

assignment of values in a -calc- 46
multiple assignments 47
implicitly defined 203
in -store-/-compute- 235
specs okassign 235

assignment symbol 46, 235
asterisk for comments 20
attached unit 40, 64, 86

by -do- 40
by -goto- 86

attempts (counting student attempts) 119
audio device 251
automated display generation 35
automatic response-associated erasing 193
automatic scaling with graphing com-

mands 182
auxiliary unit (see attached unit)

Avner, E. Appendix A
-at- 14,24 (also see -atnm- 172) (-gat- 183,

-rat- 189)
default -at- after response 97

-at- (Cont.)
one or two arguments 24, 53, 55
sets left margin 171

-atnm- does not set a margin 172
where system variable 173
where x and wherey system variables 174

-atnm- (-at- with no margin) 172 (-gatnm-
189, -ratnm- 189

-axes- 183 (also see -bounds- 184)

-back- 18 (also see -backop- 73)
-back 1- 69 (also see -backlop- 73)
-backgnd- Appendix B
BACK and BACKI return from help se-

quence 62
-backop- 73 (also see -back- 18)

alternative to "inhibit erase" 73
-backlop- 73 (also see -back!- 69)

alternative to "inhibit erase" 73
backspace 9,174
-base- 63

base pointer and base unit 63
q or blank to clear 64
automatically cleared when base unit

reached 64
set base pointer 63, 64, 198

base unit 19, 63
basic TUTOR 13
binary notation 209, 218
bit manipulation 217

cls circular left shift 223, 224
ars arithmetic right shift 224

witb negative numbers 228
$mask$ 225

constructing masks in octal 226
$union$ 229
$diff$ 229
bitcnt function 229
packing data 225
octal numbers 226
complementing bits 228
byte manipulation 229, 230

bitcnt function 229
-bounds- 184
-box- 25 (-gbox- 185, -rbox- 189)
-branch- 212 (also see -goto- 85, -doto-

213)
statement labels 212
must not have duplicate labels 212
cannot branch past -entry- 212
speed advantage compared with -goto-

212

Index

branching 59
conditional 77
within a unit, see -branch- 212

broken or dashed circle -circleb- 26
-bump- 120, 156

combinations of -put- and -bump- 158
with shift characters 158
affects -store-/-ansv- 232

bumpshift specs option 109
byte manipulation 229, 230 (also see bit

manipulation)

calc special term 256
-calc- 46, 201

conditional -calc- (-calec- and -cales-) 84
x is not the fall-through option 84

summary 201
statement label equivalent to -calc- 212
with integer variables 222
functions Appendix C

-calec- 84 (see -calc-)
-ealcs- 84 (see -calc-)
calculations 43
carriage returns and left margins 171
-catchup- 32
central memory 241
-change- 108, 136, 254
changes in TUTOR Appendix A
character grid

coarse 14
fine 23

character set 176
character strings 159

see -bump- and -put- for student charac-
ter strings

see -pack-, -move-, and -search- for other
strings

single quote marks ('dog') 160,223
double quote marks ("dog") 165, 223
6-bit character codes 220
and -calc- 221
and -compute- 231

characters
character grid (coarse 14, fine 23)
character size (8x 16) 34
10 per variable 105, 220
special characters 175

-ehar- 199
-charset- 176, 181
-chartst- Appendix B
charts (see graphing commands)
Cheshire cat 40

265

Index

Chinese characters with -rdraw- 188
-circle- 26 (-gcircle- 185, -rcircle- 189)

ellipses 185, 189
-circleb- 26
circular left shift cls 222, 224
clear (force option) 253
-clock- command 163
clock system variable 163
-close- Appendix B
coarse grid 14,23
command 13

list of commands Appendix B
comments (*) 20, ($$) 26
-comload- 243, 247
-common- 237

temporary common 237
uses of temporary common 239

-common- not executed 238
permanent common 240

splitting among many students 248
and the swapping process 240
reserving common 246

common variables 237 (also see -common-)
-compare- 254
compile 231
complementing bits 228
-compute- 231 (see -itoa- 235)
conditional commands 77 (also see -if- 91)

condition can be complicated expression
79

condition rounded to nearest integer 79,
80

with logical expressions 80
more precise due to rounding 80

consult special term 256
continued -write- statement 171
conversions

between octal and decimal 226
between alphanumeric and numeric

231,235
-course- 163

course registration 199
-concept- 111 (see -vocabs- 111)

with numbers 113
with numbered vocabulary words 117
synonyms III
with phrases (Santa*Maria) 116, 118
with endings 116, 118
markup of student response 113

missing words 113
misspellings 113

specs okextra 1i3
266

-concept- (Cant.)
interaction with -answer- or -wrong- 114
with judge wrong 115
synonomous -concept-s 116

anscnt unchanged 116
with negation 125
concept/va cabs similar to ansv/define

128
-copy- 150, 10

copy key disabled by -arrow- 150
copy compared with edit 150

cross product (vector product) 216
cursor moving routine 122

with -match- 124
with -keytype- 166

cursor special term 256
Curtin, C. 5
Cyrillic characters 176

dashed or broken circle (-circleb-) 26
data from student responses 251
-data- 69 (also see -dataop- 73)
-dataoff- Appendix B
-dataon- 252
-dataop- 73 (also see -data- 69)
data bases 237
data files 252
-datain- 248
-dataout- 248
dataset operations 248
-dataset- 248
-data1- 69 (also see -data1op- 73)

-data1op- 73 (also see -data1- 69)
-date- 163
Davis, C. 2
-day- 163
debugging facilitated by -do- 42
decimal and octal conversions 226
-define-47,202,235

use -define-, avoid primitives 48
-define- must precede related -calc- 47
explicit multiplication required 48, 235
overriding system variable definitions

56,235
student define set 103, 128, 231, 235

with algebraic judging 128
with scientific units 133
with indexed variables 205
in grafit 234

defining functions 202
warning about defining v, n, vc, or nc

205

-define- (Cont.)
defining arrays 214
defining indexed variables 205
defining segmented variables 207

-delay- Appendix B
-delta- 185
desk calculator 101
dialog (with -concept- and -vocabs-) III
dictionary using -term- 71
$diff$ 229
dimensionality of scientific units in

-storeu- 133
-disable- 250
disk permanent storage 241, 242
-do- 40 (also see -doto- 213, -if- 91)

iterative 49
compared with conditional -goto- 85
caution about slowness of segmented

variables 211
conditional 78 (also see -if- 91)
conditional iterative -do- 90

special meaning of q and x 91
undo when -unit- command encountered

87
do q like goto q 89

like -join-, except regular only 98,
142

skipped during judging and search 98
do-ing -arrow-s 100
text-insertion nature 101

-goto- causes exception 87, 145
judging command prevents un-doeing

142, 145
do level saved at -arrow- 149
nested -do-s 206
-exit- from -do-s 236

dollar signs for comments 26
-dot- 200
-doto- 213
dot product (matrix multiplication) 216
dots on screen 24

-dot- 200
display screen 3
displays 23

automated display generation 35
-draw- coarse grid 14, fine grid 25

automated display generation 35
example with complicated expressions

52
from current position 174, 186
skip option 185
updating of where, wherex, wherey 185

Index

-draw- coarse grid (Cont.)
large number of points 186
comparison with -gdraw- 189, 190
comparison with -rdraw- 189, 190
see -window- 190
erasing associated with response 195
making dots 200

drills
arithmetic 127
vocabulary 137, 138, 196

-edit- 150, 9
edit compared with copy 150

ellipses (-gcircle- 185, -rcircle- 189)
-else- 91
-elseif- 92
embedded show commands in -write-

statement 53
s for -show-, a for -showa-, t for

-showt-, e for -showe-, and z for
-showz- 53

in -writec- 84
in -pack- and -packc- 162

-enable- 250
-end- 19, 63, 64, 198

ignored in non-help sequence 64
end lesson 1.39,255
no -end- with -helpop- 73

-endarrow- 21, 99, 100
delimits preceding -arrow- 21, 100, 142
changes search state to regular state 100,

142, 148
pause between -arrow-s 100
at end of unit 100
required if -arrow- done or joined 100,

148
-endif- 92
-endings- 116, 117, 118
-entry- 89 (also see -unit-)

use in vocabulary drill 197
equality rounding

in logical expressions 81
equations in algebraic judging 131
-erase- 28, 33

automatic full-screen erase for new main
unit 22, 60

inhibit erase 1.51,197
explicit -erase- 198

-nextop- alternative to "inhibit erase" 73
erase mode 33

used in erasing responses 196
-eraseu- 195

267

Index

erasing student responses 192
-exact- 136

handles punctuation marks 136
blank -answer- not blank -exact- 126

-exactc- 136 (conditional -exact-)
exclusive union (see $diff$ 229)
-exit- 236
exponential show command, -showe- 53
exponents in floating-point numbers 219,

229
expressions (mathematical) 43

usable everywhere 52
logical expressions 80

mixing logical and numerical expres-
sions 81

student expressions 101, 102
-ext- 251
external input 250
external output 251

268

false (in logical expressions) 80
-find- 235 (also see -search- 161)
-findall- 236
fine grid 23
-finish- 239
flags using segmented variables 210
floating-point numbers 219, 229
font 11, 175

force font 177
unaffected by -size- and -rotate- 179
using -char- and -plot- 199

-force- 104
force clear 254
force long 104
force font 177
force left 177, 253
force micro 253

-foregnd- Appendix B
foreign languages 137, 196, 252
formok system variable 102, 129, 134, 233
-funct- 185 (also see 233)
function keys 9
functions 48, 202, Appendix C

parentheses around function arguments
48,102

dimensionless arguments for -storeu-
134

defining your own functions 202
int (integer part) 204, 222
sin (sine) 48
sqrt (square root) 52
modulo 204
bitcnt (bit count) 229

functions (Cont.)
plotting functions 185, 233
array functions 216

-gat- 183 (also see -at-)
-gbox- 185
-gcircIe- 185
-gdraw- 183 (also see -draw- and -rdraw-)

comparison with -draw- 189, 190
comparison with -rdraw- 189, 190

-getloc- 254
-getmark- 254
-getword- 254 (also see -storen- 125)
Ghesquiere, J. 2
-gorigin- 183

comparison with -rorigin- 189
-goto- 85 (also see -branch- 212, -doto-

213)
mild form of -jump- 85
cut off a unit 85
does not change main unit 85
relation to -do- 85, 86, 87
exception to text-insertion nature of -do-

87, 146
summary of basic properties 88
goto q 88, 139
with -entry- 89
compared with iterative -do- 90
passing arguments with -goto- 90
a regular command 98, 146
skipped during judging and search 98
must not use in attached -arrow- unit

100, 148
grafit language 234
-graph- 183
graphics 23

automated display generation 35
comparison of absolute, relative, and

graphing 189, 190
graphing commands 182 -gongm-,

-axes-, -bounds-, -scalex-, -scaley-,
-labelx-, -labely-, -lscalex-, -lscaley-,
-markx-, -marky-, -gat-, -gatnm-,
-graph-, -hbar-, -vbar-, -gdraw-, -gbox-,
-gvector-, -gdot-, -polar-, -delta-,
-funct-

grid 23
-group- 167 (see -keytype- 166)

with touch panel 168
-gvector- 184

halfcirc subroutine example 46
-hbar- 183 (also see -vbar- 183

Hebrew 177,253
-help- 18, 62 (also see -helpop- 72)

later -help- overrides earlier help 21
-helpop- 72

return to waiting point, not start of unit
73

no -end- command 73
-help 1- 69
-help 10p- 73
help sequence 62 (also see -helpop- 72)

help sequence is a slow subroutine 66
return is to beginning of base unit 66

converting between help and non-help
sequences 64

use of -jkey- to give help 152
importance of enabling HELP key 154
with inhibit erase 198

-iarrow- 75, 155, 253
-iarrowa- 253
ieu (see initial entry unit)
-if- 91
-iferror- Appendix B
-ignore- judging command 122
-imain- 73
inactive lesson 239, 241
indenting with -if-/-else- 92
index for students to use

with -term- 70
with -imain- 73
setting and clearing -imain- 74
with -store-/-ok- 103
with -match- 125
with -ansv- 126

indexed variables 204
with -storeu- dimensionality 133
warning about defining v, n, vc, or nc

205
indexed common variables 238

-inhibit-
inhibit arrow 122
inhibit erase 151, 197

interaction with -restart- 199
-nextop- alternative to "inhibit erase"

73
initial entry unit (ieu) 177

with compute pointers 234
relation to -restart- 178, 199

initializations
general questions of initialization 66, 67
unit pointers cleared when new main

unit entered 70
use of -imain - 74

Index

initializations (Cant.)
zeroing variables 207
zeroing compute pointers 232

in ieu 234
-window- not initialized by main unit

191
-size- and -rotate- not initialized by main

unit 190
with -restart- 199

initializing variables 199
zeroing temporary common 238
zeroing -storage- 247

insertion of subroutine (by -do-) 40
instructor mode 255
int function for integer part 204, 222
integer variables 221

common integer variables 238
interactions of -arrow- with other com-

mands 149
Introduction to TUTOR, Ghesquiere,

Davis, Thompson 2
iterative -do- 49, 67
-itoa- 235

jcount system variable 105
affected by specs bumpshift 109

and -bump- 156
and -put- 157, 159

-jkey- 150, 151
default set by -arrow- 150
with response erasing 192

-join- 98 (also see -do-)
universally executed (regular, judging,

search) 98, 142
like -do- except universal 98, 142, 144,

155
join-ing -arrow-s 99
text-insertion nature 101, 145

-goto- causes exception 87, 145
judging command prevents un-do-ing

142, 145
repeated execution in regular, judging,

search states 142
-judge- 115, 118

-judge- is a regular command 115, 118
judge wrong used to stay at -arrow- 115,

197
does not stop processing 119

judge noquit does stop processing
119

in student data 252
judge ok 118

does not stop processing 119 269

Index

-judge- (Cant.)
judge okquit does stop processing

119
judge continue 119, 153

in algebraic judging 131
judge rejudge 120, 156

affects -store-/-ansv- 232
judge ignore 121

stops processing 121
judge exit 123
judge no 123

does not stop processing 119
judge noquit does stop processing

119
in student data 252

judge quit, okquit, noquit 123
conditional form of -judge- 118

judging commands 95
(see -arrow-, -answer-, -wrong-,

-answerc-, -wrongc-, -concept-,
-miscon-, -match-, -ansv-, -wrongv-,
-ansu-, -wrongu-, -store-, -storea-,
-storen-, -exact-, -exadc-, -ignore-,
-ans-, -bump-, -put-, -putd-, -specs-,
-endarrow-)

summary 139
stop processing in regular state 97,

144 .
may terminate judging state 97
ok and no judgments 97

default no 97
require an -arrow- command 96
skipped in search state 97, 98
delimit regular commands 98, 142
accessed by -join- 98
switching from regular to judging state

119
judging copy of student response 120

affected by -bump- 156
judging keys 150 (see -jkey-)
judging student responses 95
-jump- 68

initializations 68
base pointer not affected 68
cancels previous -do-s 68
screen erased 68

used with -base- to initiate help se-
quence 68

compared with -goto- 85
-jumpout- 254

270

key system variable 152, 165
key names 152, 165
catching every key 164
key codes 165
timeup 166
with touch and external input 250

keyset or keyboard 8
-keytype- 166 (see -group- 167)

with touch panel 168
keyword judging 123
-kstop- Appendix B

-lab- 69 (also see -labop- 73)
-labl- 69 (also see -lablop- 73)
labeling graphs 183
labels on statements for -branch- 212, for

-doto- 213
must not have duplicate labels 212

-labelx- 183 (see -markx- 184)
-labely- 183 (see -marky- 184)
-labop- 73 (also see -lab- 69)
-lablop- 73 (also see -labl- 69)
languages 1.37,196, 252
large-size writing 26
left shift (see circular left shift 222, 224)
leftward writing 177,252
lesson samples 4-6
lesson space 181, 240
lesson not swapped 244
levels of -do- (10 permitted) 41
line drawings (see -draw-)
line-drawn characters (see -size- and

-rotate-) 179, 188
-lineset- 179, 181, 188
-list- 110

in -answer- and -wrong- 110
-loada- 1,59,160
locking common 246
logical expressions 80

in conditional commands 80
mixed with numerical expressions 81
logical operators ,9",<,>,5,2: 80

roundoff on equality 81
logical operators and, or, (not) 81,

82
-long- 103

force long 104, 150
follows -arrow-, precedes judging com-

mands 104
modifies -arrow- 104

-long- (Cont.)
must precede -specs- 107
long 1 with judge ignore 122
default set by -arrow- 150
-edit- for long greater than 150 charac-

ters 150
-lscalex- 184 (see -scalex- 183)
-Iscaley- 184 (see -scaley- 183)
lscore (associated with -score-) 255

main unit 59, 64, 85
not affected by -goto- 85

margin set by -at- and -arrow- 171
marker

-arrow- marker 96, 97
-specs- marker 109, 114

markup of response 97
-markx- 184 (see -label x- 183)
-marky- 184 (see -labely- 183)
masking in bit manipulations ($mask$)

225
-match- 123

also see -storen- 125
in grafit language 234

mathematical expressions 43
matrix multiplication 216
matrix operations 214 (also see arrays)
Max(array) 216
merge (see $union$ 229)
-micro- 181

force micro 253
microfiche 249
micro-key options 10
micro table 181
Min(array) 216
-mode- (erase, write, rewrite) 33, 174, 179

conditional form 85
-modperm- 138 (also sec permutations)
modulo function 204
-move- 160
multiple -arrow-s 21, 99
multiplication

explicit between defined names 48
(except for students 103)

talses precedence over division 44
music 251

-name- 163
naming variables (-define-) 47
ncl-ncl500 common variables 243

Index

negative words 110, 125
-next- 18, 59 (also sec -nextop- 73)

put near beginning of unit 61
successive -next- commands override 61
"next " or "next q" to clear

pointer 61
NEXT key 9, 60

always a judging key 150
ignoring extra NEXT keys 155

next physical unit 60
-next 1- 69, 70 (also see -next1op- 73)
-nextnow- 18, 20
-nextop- 73 (also see -next- 59)

alternative to "inhibit erase" 73
-next lop- 73 (also see -nextl- 69)

alternative to "inhibit erase" 73
-no- 103, 123

in arithmetic drill 127
nodiff specs option 107
non-help sequence 64

converting between help and non-help
sequences 64

non-numerical parameters specified by
student 104

nookno specs option 108
noops specs option 128
noorder specs option 18, 108, 116
noquit (judge option) 119, 123
not (logical function) 82
notes Appendix A
notoler specs option 107
novars specs option 128
-noword- 197, 253
nrl-nr50 router variables 255
numbering vocabulary words 117
numeric information different from alpha-

numeric 105
range of numerical values 217

numerical parameters specified by student
101, 126

checking for negative 119
numerical and algebraic judging 126

algebraic 128
nl-nl50 student variables 221

octal numbers for masks 226
octal show command, -showo- 53, 227
offset arrays 217
-ok- 101, 119, 123
okassign specs option 235

271

Index

okcap specs option 107
okextra specs option 18, 108, 113
okquit (judge option) 119 123
okspell specs option 107, 116
-okword- 197, 253
opcnt system variable 128, 129
-open- Appendix B
operations (see precedence)
optional words

in -answer-i-wrong- 16
in -vocabs- 111

-or- judging command 251
or (or) logical operator 81
Or(array) 216
-output- 252
-outputl- 252

-pack- 162
-packc- 162
parentheses around function arguments

48,102
partial circle 26
passing arguments 53 (see arguments)
-pause- 28, 164

between -arrow-s, with -endarrow- 100
catching every key 164
no key display 167
no help at blank -pause- 167
pause keys=a,b,etc. 168

help, term, etc. possible 168
NEXT key special 168

with touch panel 168
permanent common 240 (also see

-common-)
permanent storage area 240
permutations 138

-randp- 138
-setperm- 138
-remove- 139
-modperm- 138
vocabulary drill 137

Persian 177,253
photographic projection 249
phrase (such as Santa*Maria) 17, 116, 118
physical next unit 60
place notation 224
plasma display panel 3
-play- 251
-plot- 199
plotting functions 233 (also see -funct-

185)

272

pointers (next, help, base, etc.) 60
q or blank to clear pointer 61, 65
successive commands override earlier

settings 61, 65
cleared when new main unit entered 70
compute pointer 232

zeroing in ieu 234
pointing at touch panel 168, 250
-polar- 184
positioning 23
powers in floating-point numbers 219, 229
precedence (of mathematical operations)

44, 132
preparing lesson for active use 239
-press- Appendix B
primitive variable names (vI-v 150) 44, 48,

235
Prod(array) 216
punctuation in responses 108, 126, 136,

254
-put- 120, 157

affects jcount 159
terminates judging if string too long 157
combinations of -put- and -bump- 158
affects -store-/-ansv- 232

-putd- 158 (also see -put-)
-putv- 158 (also see -put-)

q (special unit name) 61, 65
clears unit pointers 70, 79
goto q 88, 139
in conditional iterative -do- 91

quit (judge option) 123
quote marks for character strings

single ('dog') 160, 223
double ("dog") 165, 223

random numbers (see -randu- and permu-
tations)

-randp- 138 (also see permutations)
-randu- 82

arithmetic drill 137
algebraic judging 128, 129
compared with -randp- 138

range of numerical values 217
-rat- 189
-ratnm- 189
-rcircle- 189
-rdraw- 187

affected by -size- and -rotate- 188
compared with -gdraw- 189

readability with subroutines 40
-readd- 2.52
-readset- Appendix B
records in datasets 248
-record- Appendix B
registration records 199, 242

-storage- not saved 247
regular commands 96

skipped in judging state 96, 120, 141,
146

skipped in search state 97, 98, 142
-do- and -goto- are regular commands 98
switching from regular to judging state

119
judging command stops and prevents

un-do-ing 142, 144
relative graphics commands 189, 190
-release- 246, 248
-remove- 139 {also see permutations}
-reserve- {common 246, dataset 248}
reserving common 246
reserving dataset records 248
responses {see judging}
response data 251
-restart- 199 {also see initial entry unit

177}
-storage- not saved 247

restarting a lesson 178 {-restart- command
199}

resume (in -jumpout-) 254
return from help sequence 63, 66
Rev{array}216
rewrite mode 34,174,179
right shift {see arithmetic right shift 224,

228}
-rotate- 26

interaction with -arrow- 149
affects -writec- 84
does not affect alternate font 179
affects -rdraw- even in size zero 188
not initialized by main unit 190

-rorigin- 187
compared with -gorigin- 189

rounding
of condition in conditional commands

79,80
in equality operation 81
in indexed variables 205
in segmented variables 211
with integer variables 222

-route- Appendix B

Index

routers 2.54,25.5
router variables {vrl-vr.50}255
-routvar- Appendix B
Russian alphabet 176
-rvector- 189

-scalex-/-scaley- 183 {also see -lscalex-/
-lscaley- 184}

comparison with -size- 189
scaling in graphing commands 182
scientific units 133 {see -ansu-}
-score- 255
-search- {character string command} 161
search state (looking for additional

-arrow-s) 97, 142
skips regular and judging commands 97

segmented variables 207, 230
table of ranges and space 209
signed segments 208
fractional numbers 210
slowness 211
equivalent bit manipulations 225
byte manipulations 229
vertical segments 2.30

segmentv.230
selecti ve erase {text 28, graphics 33}
sequencing 59

summary of sequencing commands 69
author-controlled and student-controlled

70
within a unit, see -branch- 212

-set- {fill alTay elements} 217
-setperm- 138 {also see permutations}
Sherwood, B. 5
Sherwood, J. 7
shift character 104, 1.'56,157, 158, 162
shift operators {cls 222, 224} {ars 224,

228}
skip in -draw- 185
-show- 51

significant figures 52
-showa- {alphanumeric} 53, 105

default length 105
uses 6-bit character codes 220
ignores null characters 222
with v or n variables 222

-showe- (exponential) 53
-showt- {tabular} 53
-showo- {octal}53, 228
-showz- {show trailing zeroes} 53
automatic erasing 194

273

Index

sign-in/sign-out 199, 242
simulation of judging and search 98
sin (sine function) 48
-size- 26

interaction with -arrow- 149
affects -writec- 84
does not affect alternate font 179
affects -rdraw- 188
comparison with -scalex- 189
not initialized by main unit 190

skipping over main units 59
-slide- 249
Smith, S. 4, III
smooth animations 178
-sort- 248
-sorta- 248
sorting lists 248
special characters 175
specifying parameters

numerical
-store- 101
with -show- 106

non-numerical
-storea- 104
with -showa- 106

-specs- 17, 18, 107
notoler, nodiff 107
bumpshift 109
okcap 107
okspell 107

with -concept- 116
okextra 18, 108, 113
noorder 18, 108

with -concept- 116
nookno 108, 115
noops, novars 128
okassign 235

-specs- is a judging command 107
-specs- sets a marker 109, 141

later -specs- overrides earlier marker
109

clears anscnt 114
speech 251
spell system variable 109
spelling and -compare- 254
square root function, sqrt(expression) 52
statement has command and tag 13
statement label with -branch- 212, with

-doto- 213
must not have duplicate labels 212

status bank 242
-step- command 256

274

step special term 255
-stoload- 247
-storage- 246 (also see -common-)

not saved on sign-out 247
zeroed on sign-in 247

-store- 101
a judging command 102
judges no if cannot evaluate 102
with -show- 106
compared with -storen- 125
with -ansv- 126
concept/vocabs similar to ansv/define

128
warning about (l/2x) 132
affected by -bump-, -put-, and judge re-

judge 232
no primitive variable names 235
no assignments without specs okassign

235
store values into variables 44
-storea- 104

with -showa- 106
with character string manipulations 159
opposite of -loada- 159
compare with -pack- 162
merely collect response 164
uses 6-bit character codes 220
with v or n variables 222

-storen- 126
also see -match- 123 and -store- 101 and

-getword- 254
-storeu- 133

terminates judging if error 134
warning about (3+6cm) with -storeu-

135
strings 159 (see character strings)
student define set 103 (also see -define-)
student responses 95

storing responses (see specifying param-
eters)

judging responses (see judging com-
mands)

student response data 251
student specification of parameters (see

specifying parameters)
student variables (vl-v150) 44

in displays 45
compared with common variables 238
augment with -storage- 246

-subl- Appendix B
Sum(array) 216
superimposing writing 34, 174

superscripts and subscripts 10, 174
system variable 55

anscnt 113
args 55
clock 163
formok 102, 129, 134, 233
jcount 105

affected by specs bumpshift 109
and -bump- 156
and -put- 1.59

key 152, 165
opcnt 128, 129
spell 109
varcnt 129, 132
vocab 115
where 173

updating in -draw- 185
wherex 174
wherey 174

subroutines 39
superscripts and subscripts 174
swapping process 240, 243

swapping memory 241
and common variables 243

synonyms
in -answer- 16, 95 (also see -list- 110)
in -concept- 113 (also see -vocabs- Ill)
in numbered vocabulary words 118

table of square roots 52
-tab set- Appendix B
tabular show command, -showt. 53
tag 13
talk special term 256
temporary common 238 (also see

-common-)
Tenczar, P. 6
-term- 70 (also see -termop- 72)

complementary to -help- 71
dictionary use 71
duplicate tenus an error 71
synonyms 72
step, cursor, consult, talk, calc 255

terminal capabilities 3, 249
-termop- 72
text (see -write-, -size-, -rotate-)
text insertion of subroutine (by -do-) 40

-arrow- in subroutine 100, 148
Thompson, C. 2
tick marks on graphs 184
-time- 31

Index

time-slice 245, 246
timeup key 166
tolerance

with -answer-/-wrong- 107
with -ansv-/-wrongv- 126
with -ansu-/-wrongu- 135
on equality operations 81

-touch- 251 (also see 168)
touch panel 168, 250
transfr- 207

not with segmented variables 208
with -common- or -storage- 247

Transp(array) 216
tries (counting student attempts) 119
true (in logical expressions) 80

unconditional commands 79 (also see con-
ditional commands)

$lInion$ 229 (also see $diff$ exclusive
union 229)

-unit- 14
terminates preceding unit 87

see -entry- (which does not terminate)
89

must not have duplicate -unit- names
212

unit pointers (see pointers) 60
units (scientific units) 133
universal execution of -join- 98, 142
-use- Appendix B

varcnt system variable 129
variables

student variables 44
with -restart- 199
with -storage- 246

indexed variables 204
with -storeu- dimensionality 133

cornman variables 237
segmented variables 207
range of numeric values 217
router variables 255

-vbar- 183 (also see -hbar- 183)
-vector- 25 (-gvector- 184, -rvector- 189)
vertical segments 230
vocab system variable 115
-vocab- 116
-vocabs- 111,252 (see -concept- 111)

numbering vocabulary words 117
vocabulary drill 137
vcl-vcl500 eommon variables 243
vrl-vr50 router variables 255

275

Index

vl-v150 student variables 44
where system variable 173

updating in -draw- 185
wherex system variable 174
wherey system variable 174
-window- 190
-write- coarse grid 14, fine grid 24

with embedded show commands 53
s for -show-, a for -showa-,
t for -showt-, e for -showe-, and z for

-showz- 53
conditional -w~ite- (-writec-) 82
with left margins 171
continued -write- statement 171
successive -write- statements 172
also sce -size- and -rotate-
size 1 versus size 0 188
automatic erasing 192
alternate font

with charset 176
using -char- and -plot- 199

276

write mode 34
-writec- 82 (also see -write-)

x is not the fall-through option 83
special character when using commas 83
with embedded show commands 84
affected by -size- and -rotate- 84
automatic erasing 192

-wrong- 16 (also see -answer-)
-wrongu- 135 (also see -ansu-)
-wrongv- 126 (also see -ansv-)

with scientific units 135

x (special unit name) 62, 79

-zero- 207
not with segmented variables 208

$$ (permits comments to follow tag) 26«» embedding -show- in -write- 53

