
ED 124 137

AUTHOR
TITLE
INSTITUTION

SPONS AGENCY

PUB DATE
CONTRACT
NOTE
AVAILABLE FROM

EDRS PRICE
DESCRIPTORS

IDENTIFIERS

ABSTRACT

DOCUMENT RESUME

IR 003 525

Ghesquiare, James R.; And Others
Introduction td TUTOR.
Illinois Univ., Urbana. Computer-Based Education
Lab.
Advanced Research Projects Agency (DOD), Washington,
D.C.; National Science ;Foundation, Washington,
D.C. \

Jul 75
US-Army/DAHC-15-73-C-0077; USNSF-C-723
163p.
PLATO Publications, Computer-based Education Research
Lab, 252 Engineering Research Laboratory, University
of .Illinois,. Urbana, Illinois 61801, ($2.70,
prepayment required)

IMF-$0.83 HC-$8.69 Plus Postage.
*Computer Assisted Instruction; Higher Education;
Instructional Systems; *Manuals; *Programing
Languages
*PLATO IV; Programmed Logic for Automated Teaching
Operations; TUTOR

This manual provides instruction in the use of TUTOR,
the computer language used in the PLATO computer based education
system. A preliminary lesson and the,first seven chapters introduce
the basic features of the language, and later chapters provide a more
comprehensive understanding of the concepts involved. The text
explains how to use the language to direct the computer to present
displays, pose questions, judge responses, perform calculations,
determine interconnections between units, and to branch to units
relevant to user responses. The appendixes provide a summary of TUTOR
commands and show procedures for editing in the TUTOR language.
(FM H)

* Documents acquired by ERIC include many informal unpublished *

* materials not available from other sources. ERIC makes every effort *
* to obtain the best copy available. Nevertheless, items of marginal *

* reproducibility are often encountered and this affects the quality *

* of the microfiche and hardcopy reproductions ERIC makes available
* via the ERIC Document Reproduction Service (EDRS) . EDRS is not
* responsible for the quality of the original document. Reproductions *
*y supplied by EDRS are the best that can be made from the original.
**

Introduction
to

Li, TUTOR

c*-6

CO

O

U S OEPARTMENT OF HEALTH,
EOUCATION & WELFARE
NATIONAL INSTITUTE OF

EDUCATION

THIS DOCUMENT HAS BE`EN REPRO-
DUCED EXACTLY AS RECEIVED FROM

THE PERSON OR ORGANIZATION ORIGIN-
ATING IT POINTS OF VIEW OR.OPIN/ONS
STATED DO NOT NECESSARILY REPRE-

SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

James R. Ghesquiere

Celia R. Davis

Charlene A. Thompson

PLATO Services Organization

Computer-based Education
*
Research Laboratory

Urbana, Illinois

PERMISSION TO REPRODUCE THIS COPY
RIGHTED MATERIAL HAS BEEN GRANTED, BY

eop-,?0ce r Ezloce-l-p on

g¢SzerCk Lab ()ITN. of Zlli!tc:a
TO ERIC AND ORGANIZATIONS OPERATING
UNDER AGREEMENTS WITH THE NATIONAL IN
STITUTE OF EDUCATION FURTHER REPRO-
DUCTION OUTSIDE THE ERIC SYSTEM RE-
QUIRES PERMISSION OF THE COPYRIGHT

OWNER

Copyright by Board of Trustees
of the University of Illinois

1

FirstPrinting, March 1974
Second Printing, June 1974
Third Printing, July 1975

All rights reserved. No part of this book
may be reproduced in any form or by any means
without permission in writing from the authors.

This manuscript -was prepared with partial
support from the-National Science Foundation
(USNSF C-723) and the-Advanced Research
Projects Agency (US Army/DAHC 15-73-C-0077).

ACKNOWLEDGMENT

The authors-wish to thank Elaine Avner, R.A, Avner, Robert Bohn,

Larry Francis, William Golden, Bruce Sherwood, and Judy Sherwood for

reading the manuscript and making many valuable suggestions. The authors

would like to express their appreciation to Sibyl Pellum and Terri Parker

for typing the manuscript, and to Wayne Wilson for doing the graphic work\

We are also grateful to those PLATO authors who used and commented upon

early drafts of this manual.

Table of Contents

Page

Preface ix

Chapter 1. Writing on the Panel and Judging Student Responses. . . 1.1

The TUTOR Building Block, the Unit 1.1

Accepting Student Responses 1.3

Exercise A 1 10

2. Variety in Displays anu equencing . 2 1

Sized Writing, Rotated Writing, and Drawing Lines . . 2.1

Sequencing of TUTOR Units 2.4

Erasing Part of a Display 2.8

Displaying Circles 2.11

Exercise B 2.15

3. Doing Calculations and Using Variables

Student Variables

Giving Variables Meaningful Names

3.1

3.1

3.3

Displaying Values of Variables 3.5

Displaying Tables of Numbers 3.6

Systems Reserved Words 3.8

Exercise C 3.10

. Conditional Operations 4.1

Conditional Branching 4.1

Conditional Writing 4.2

Exercise D 4.3

5. Branching the Student 5.1

Branching Via Function Keys 5.1

Main Units . 5.1

The -jump- Command 5.2

Help Sequences:._ Anse TTni ty, tiy__. 5 2

Exercise E 5.8

Page

6. The Judging Process 6.1

Regular and Judging Commands 6.1

Judging Numerical Responses 6.3

Storing Numerical Responses 6.6

Multiple Arrows in a Unit 6.7

Exercise F 6.8

7. Random Numbers 7.1

Sampling with Replacement 7.1

Sampling without Replacement 7.3

Automatic Review of Items "missed" in a Drill. . . . 7.4

8. Additional Judging Capabilities 8.1

The -specs- Command as a Marker 8.1

The -match- Command 8.2

The "judging copy" of a Response 8.6

Removing Numbers from the Judging Copy 8.9

The 7-exact- Command 8.10

Student Dialogs 8.11

9, More Display Features 9.1

Additional IFeatures of -at- and -write- 9.1

Writing in Different Modes 9.3

Figures Drawn from a Reference Location 9.6

Charts and Graphs 9.9.

Custom Made Characters 9.9

The Micro Option 9.11

Color Micrbfiche 9.12

Touch and Audio 9.12

Cover Design 9.12

10. Special BranChing Features

Using the TERM, Key

Altering the Base Unit

Finishing and Restarting a TUTOR Lesson

10 1

10 1

. . 10.2

10 4

Page

11. Looping
11.1

The Iterative Form of the -do- Command 11.1

The -goto- Command
11.3

The -goto- Command and the "q" Branch 11.6

12. Additional Ways to Use Variables and Do Calculations. 12.1

Storing and Showing Characters 12.1

Conditional Calculations
12.1

Logical Operators
12.4

Segmented Variables
12.5

Defined Functions
12.7

13. What NEXT?
13.1

Developing Lessons
13.1

Learning More TUTOR 13.1

Keeping Current
13.2

Getting Help
13.2

Other Features and Resources 13.4

A. Editing in TUTOR
A.1

Lesson Data
A.1

Lesson Security Code (Lesson Change Code) . . A.2

INSPECT ONLY as an Author
A.3

Inserting TUTOR Code A.4

Deleting and Replacing Lines
A.5

The COPY and EDIT Keys
A.6

Testing Your Lesson in Student Mode A.6

Additional Editing Options
A.7

B. Summary of TUTOR Commands, -specs- Options,

and Systems Reserved Words
B.1

TUTOR Commands
B.1

-specs- Options
B.4

Systems Reserved Words
B.4

PREFACE

TUTOR is the name of the computer language used by the PLATO computer-

based education system. This book is an introduction to the TUTOR language

for persons who have no knowledge of computers. After working through the

training 'program of which this book is a part, you will be able to write

useful and successful lessons and will be prepared to learn aspects of

TUTOR not formally introduced here.

This training program has three parts: this book, a PLATO lesson named

"introtutor", and programming exercises for you to do in your lesson space.

Lesson "introtutor" and chapters 1 through 7 introduce the basic features of

TUTOR. Chapters 8 through 12 give an expanded and more comprehensive view

of the material presented in the earlier chapters. Chapter 13 contains

information on how to proceed after completing this book. On the back

cover is a checklist to guide you as you work through the book, lesson

"introtutor", and the exercises.

1.1

1. Writing on the Panel and Judging Student Responses

The TUTOR Building Block, the Unit

TUTOR lessons are composed of units. A unit consists of statements

directing the computer to do any or all of the following:

present a display (text, graphics, slides) on the panel

pose a question or problem

judge various responses as "ok" or "no"

perform calculations

determine how the present unit connects to other units in

the lesson

All statements in TUTOR have the form

command tag

where the command is a general instruction to the computer and the tag

is specific information for performing the general instruction.

Each unit is initiated by a -unit- command. (Hyphens placed around

words in this manual are used for clarity in identifying TUTOR commands.

The hyphens are not part of the command.) The tag of a -unit- command is

the name of the unit. You may give a unit any name you wish but it may not

be longer than 8 characters, and no two units in a lesson may have the same

name. The end of a unit is indicated by PLATO's encountering another -unit-

command."

unit writing
at 1415

write How are your
unit question

unit
"writing"

unit
"question"

The first command, -unit-, marks the beginning of the unit. The tag

"writing" is the name of the unit. The statement -unit question- marks

1.2

the end of unit "writing" and the beginning of unit "question". The -write-

command instructs the computer to put writing on the panel. Thus the words

"How are you?" will be displayed on the panel. The -at- command, preceding

the -write- command, causes the tag of the following -write- command to be

displayed at a particular location on the panel. The.tag "1415" of the -at-

command specifies the location of the writing.

The panel has 32 horizontal lines and each line has 64 spaces. Any

location on the panel is specified by indicating the number of lines from

the top and the number of spaces from the left. Thus the statement

at 1415

designates the fourteenth line from the top, fifteen spaces from the left.

The text in figure 1.1 is written beginning at location 1415. This location

system is called the "coarse grid". A way of locating points more precisely,

the "fine grid", will be discussed later.

How are you?

64 spaces -4-

Figure 1.1 The text-appears at line 14, space 15

4-0

1.3

Suppose you want to write "How are you?" on the fourteenth line at the

fifth space. Use the statement

at 1405

PLATO always interprets the last two digits as the space reference. If there

are three digits, the first one is interpreted as the line reference; if

there are four digits, the first two are interpreted as the line reference.

The statement

at 145

causes the writing to begin at the 45th space of the first line.

Accepting Student Responses

In any TUTOR lesson you will probably want to ask questions of the student,

and to tell him whether his response ig right or wrong. Thus you need a way

to accept student input and to evaluate it. The following unit presents a

question and specifies a correct answer.

unit gorge
at 1203

write Where is Louis S. B. Le -ky's anthropological dig?

arrow 1401

answer Olduvai Gorge

The -arrow- command signifies that a student response is expected.

An arrow is plotted at the location specified in the tag (in this case 1401).

The format of the -arrow- tag is the same as the -at- tag. In this unit the

arrow is plotted 14 lines from the top and 1 space from the left. When the

student types a response it will appear on the panel to the right of the

arrow.

After the student types a response and presses the NEXT key, his response

is compared to the tag of the -answer- command. (Names of keys on the PLATO

keyset appear in full capital letters in this manual.) If they are the same,

the word "ok" is written on the panel to the right of the response. If they

are not the same, several things happen automatically. If the student mis-

spells a word, it is underlined (). If he has a word out of order,

J. I

1.4

,

the marking () appears. If he has words in his response which don't

occur at all in the -answer- tag, x's appear under those words (
x
).

xxxxxx
The word "no" appears to the right of the response and PLATO waits for the

student to press NEXT or ERASE and try

Spaces and punctuation marks in the student's response are all interpreted

as word separators. If the student should leave two spaces between the words

"Olduvai" and "Gorge", his response would still be judged "ok". HoWever, for

the student to be judged "ok" he must type "Olduvai Gorge" with both words

capitalized. If he types "Olduvai gorge" it will be judged "no" because he

didn't' capitalize the word "gorge". Unit "gorge" can be modified to accept

either small or capital letters. The -specs- command allows you to specify

judging options. If we insert the statement

specs bumpshift

before the -answer-*command, and change the -answer- tag to

answer olduvai gorge

(that is, no capitalization of "olduvai" or "gorge" in the -answer- tag) then

the student may type either small or capital letters and his response will be

judged "ok". The tag "bumpshift" means that capitals will be ignored in the

student response. Several other -specs- tags are available, such as

specs okspell

which judges "ok" even if words are misspelled in the student's response.

Another -specs- tag, "nookno", will inhibit the writing of the "no" or "ok"

after the student's response.

Even with these modifications to unit "gorge", many correct answers

will still be judged "no"- For instance, "It is Olduvai Gorge in Kenya."

or "The Olduvai Gorge." would be judged "no". To allow for this, we can

make further modifications to the -answer- tag:

answer <the,it,is,in,at,kenya> olduvai gorge

The words within < > are "ignorable" words. If any of them appear anywhere

1.5

in the student's response, they will be ignored by PLATO; they will not

cause the answer to be judged "no". The words "olduvai" and "gorge" are

called "requiree.words. They must appear in the student response and in

the same order as they appear in the -answer- tag for the response to be

judged "ok":.

We might want to make one more alteration of the -answer- tag. If

'101duvai canyon" is an acceptable response, as well as "olduvai gorge", we

can specify that "Canyon" and "gorge" ara synonyms for purposes of this

answer.

answer--<the,it,is,in,at,kenya> olduvai (gorge,canyon)

Words enclosed in () are called "synonomous words" or just "synonyms".

Now the required words for this answer are "olduvai" and either "gorge" or

"canyon".

We have already seen that when a student response does not match the

answer- tag, some feedback may appear (L). But sometimes you may
-==,xxx,

want to give a student more specific feedback if he makes a particular error.

More additions to unit "gorge'.' are shown below.' The tag for the last

-write- statement in the modified'unit "gorge" is displayed as it looks in

`the TUTOR editor, which has shortened lines for display (since the command

must appear with each statement). That is, the "ees." wraps around to the

next line. When displayed for a student, the phrase "That's the chim-

panzees." will appear on one lin . In general, all examples of TUTOR code

which are provided in this manu I appear as if they were written in the

TUTOR editor.

gorgeunit
at

write Where is-Lnuis S. B. Leaky's anthropological dig?
arrow 1401
specs bumpshift,okspell
answer <the,it,is,in,at,kenya>olduvai (gorge,canyon)
wrong <it,is,the-,-at,in,tanzania>gombe stream research cen

ter

write That's the site of Jane Goodall's work with chimpanz
ees.

Va.

13

1.6

If the student types "It is at the Gombe Stream Research Center in Tanzania."

or "the Gombe Stream Research Center" his response will be judged "no" and

the sentence "That's the site of Jane Goodall's work with chimpanzees." will

appear automatically starting 3 lines below the arrow.

The -wrong- command works like -answer- except that if it is matched

the response is judged "no". The words in ,< > are "ignorable" words; the

rest are required wordS. The student must have the words "gombe stream research

center" in that order for, his response to match the -wrong-. He may haveany /
or all of the "ignorable" words in any order, and his response will still

match the -wrong-. The sentence "That's the site of,Jane Goodall's work with

chimpanzees." will appear only if the student response matches the -wrong- tag.

Any -write- commands folloWing a -wrong- or an -answer- statement are done

only if the student's response matches that -wrong- or -answer- tag. If the
/

student's response matches neither the -answer- tag nor the -wrong- tag, the

response will be judged "no". PLATO automatically judges "no" any response

not anticipated by the author. Figure 1.2" illustrates this process pictorially

in a flow chart of unit "gorge".

If:the student's response matches the -answer- tag, the rest of the unit

is not done,, because all the rest of the commands' specify how to handle

incorrect responses. Since
-,

the response is,correct, there is no need to do
,

that. Only if his response matches the -wrong- tag will PLATOexecute the

command following the -wrong- (i.e. write "That's the site of Jane Gbodall's

work with chimpanzees."). Then PLATO judges the responSe "no" and waits for

another student response. If the response matches neither the -answer- nor

the -wrong- tag, PLATO writes its'default "no" and,:cgoes back and waits for

4 another response. This will happen. as many times.: as the student types an

incorrect answer; only when the arrow is Satisfied by a correct student response

will PLATO allow the student to continue.

Added to unit "gorge" below i a -write- statement following the -answer-.

unit ,gorge

at 1203

write Where is Louis S. B. Leaky's anthropological dig?
arrow 1401
specs bumpshift,okspell
answer <the,it,is,in,at,kenya> olduvai (gorge,canyon)
write Homo habilis was discovered there.
wrong <it,is,the,at,in,tanzania> gombe stream research cen

ter
write That's the site of Jane Goodall's work with chimpanz

ees.

display on the. panel:

"Where is Louis S.B.
Leakey's anthropological
dig?"

I plot an arrow

wait for student's
response

at 1401

erase "no"
erase student's response
erase "That's the site..."

if -wrong- was matched

student
presses
NEXT or
ERASE

write "no"

no

1.7

yes
write "That's the
site of Jane Goodall's

Does student's
response match

\ work with chimpanzees." -wrong- tag ?.

student types a
response and presses

A I

NEXT

compare student's
response to answer-
tag, ignoring capitals,
spelling errors, and

...ignorable words'

Does student's response
match -answer- tag?

yes

write "ok", go on to
next unit when
student presses NEXT

Figure 1.2 Flow diagram of unit "gorge"

n

compare student's
response to'-wrong-
tag, ignoring
capitals, spelling
errors, and
ignorable words

1.8

The sentence "Homo habilis was discovered there." will appear after the

student has correctly answered the question. Figure 1.3 shows how this unit

looks on the student's panel after a correct response.

There is no -at- command in unit "gorge" between the -answer- and -write-

or between the -wrong- and write statements. Such writing will automatically

be placed 3 lines below the response. If you want to position it elsewhere,

insert an -at- command with the desired tag before the -write-.

Where is Louis S. B. Leaky's anthropological dig?

> At the Olduvai Gorge in Kenya ok

Homo habilis was discovered there.

Figure 1.3 "ok" response to udit "gorge"

I

1.9

The -answer- and -wrong- tags of unit "gorge" have several ignorable

words. Even with this list, not all correct responses are accepted as "ok"

by PLATO. For example, the response "It is located in Olduvai Gorge" would

be judged "no" because the word "located" is not listed among the anticipated

words. There is a -specs- tag, "okextra", which permits extra words in the

student response. When a -specs' okextra- statement is used, only the required

words of the -answer- and -wrong- commands need to be specified. Unit "gorge"

can be modified by adding the "okextra" tag to the -specs- statement and re-

moving the ignorable words from the tags of the -answer- and -wrong-.

unit gorge

at 1203

write Where is Louis S. B. Leaky's anthropological dig?

arrow 1401

specs bumpshift,okspell,okextra
answer olduvai (gorge,canyon)

write Homohabilis was discovered there.

wrong gombe stream research center

write That's the site of Jane Goodall's work with chimpanz

ees.

Because capitalization and-extra words are often not important in a student's

response, many arrow- commands will have a -specs bumpshift,okextra-. associated

with them.

1 . 10

Exercise A General Comments

When doing these exercises you will be editing in whatever lesson has

been assigned to you. The name of your lesson was decided by you and your

course director. Whenever you are asked to do-some editing in your lesson,

you should enter on the author mode display the lesson name you and your

course director picked.

To help you in these exercises there are sample lessons available through

lesson "introtutor" which show you what your lesson will resemble in student

mode. You cannot edit the sample lessons.; you can only use them as a student.

Enter lesson "introtutor" again in student mode-and choose sample lesson A.

Study sample lesson A noticing the flow of units and the interaction between

the computer and the student.

You see (in sample lesson A) that exercise A Consists of four TUTOR units.

A flow diagram of units you will create in this exercise is presented .in figure

1.4.' In these flow diagrams, each unit is-represented by a box. The name of

the unlit is in the box and if the unit requires a response from the student,

an arrow (>) is in the box. The lines connecting units indicate which unit

the student will see after completing the present unit and which key press is

required to branch to another unit (NEXT). For easy cross reference between

your own lesson and exercise descriptions, use the unit and block names

suggested in the exercises.

The topics for the exercises are science and psychology. Two different

pedagogical approaches have been used: simulation in the science topic and

tutorial in the psychology topic. Both topics are summarized below in order

to provide some background material.

Newton: Isaac Newton (1642-1727) can be considered the father of

classical physics. He developed three laws of motion, that is,

mathematical equations which describe how objects' movement

through space is related to the forces that move them. The

most often quoted story about Newton is that one day, while he

was sitting under an apple tree, an apple fell and struck him.

The event - supposedly "brought the light" to Newton about some

ideas on motion and gravity.

Transactional Analysis: The specific material for this topic is Thomas

Harris' book I'm OK -- You're OK. Harris and Eric Berne, the

author of Games People Play, are the popularizers of transactional

newton

analysis. They say that their psychology is different from

Freud's because it is usable by non-psychologists. The

questions in the psychology topic analyze which components

of people (Parent, Child, or Adult) are active in transactions.

NEXT

°I

pacintro NEXT wifehus

Figure 1,4 Flow diagram of units for exercise A

Physics Units

NEXT manson

Enter your lesson from the author mode display and delete allTUTOR code

which might be in it. .When only block "a" remains and all lines ha been

deleted from it, your lesson is empty. Now you are ready to start inserting

your own material. You can refresh your memory on hoW to edit by pressing

HELP while editing or by referring to Appendix B,

Create a new block after "a" (shift "a" while on the block listing

display enables you to add a block after "a"). Call the new block "physics".

Insert the code from figure 1.5 in block "physics". Remember tonse the TAB

key to line up the tag field correctly. You should not type the line numbers.

These numbers appear automatically after you,have entered TUTOR code and have

returned to the line display. After this code from figure 1.5 is entered,

press SHIFT-STOP (both keys together) to condense your lesgon. Your display

panel should resemble figure 1.6.

Try typing some responses not anticipated by your -answer- command, such

as "apple", "a thought", "He was struck by an idea". This version.of your

lesson accepts as correct only the responses "idea" and "an idea ". All other

responses are judged "no".

Edit your lesson again and expand the 'response judging' capabilities of

unit "newton" so that it accepts the above iesponses. Modify the'-answer-
,

command to include synonyms for "idea" and add the appropriate ignorable words.

When a -specs bumpshift- is used, there should be no capital letters in the

tags of -answer- and -wrong- commands, so checkthat you have none.

1.9

1.12

1 unit newton
2 at 210
3 write One Story of The Apple!!
4 at 405
5 write One day, while sitting under an apple tree, Newton
6 was struck by something . . .

7

8 What was it that struck Newton?
9 arrow 1010

10 answer <an> idea
11 at 1205
12 write Yes, it was while under an apple tree (and maybe eve

n
13 being struck by a falling apple` that Newton cleared

up
14 some ideas on gravity.

Figure 1.5 Code for 1?lit "newton"

One Story of The Apple!!

One day, while sitting under an apple tree, Newton
was struck by something . . .

What was it that struck Newton?

Figure 1.6 Display from unit "newton" seen in student mode

2 o

1.13

Try your lesson again in student mode. The previously unaccepted responses

are now judged "ok". Complete unit "newton" so that it resembles figure 1.7.

Condense your lesson and try the new responses. Enter the wrong response

first and notice that only the last comment written by PLATO is ,erased when

you press NEXT or ERASE to enter another 'response. The other comment remains

on the panel. After a "no" judgment by PLATO, only the last -write- state-

ment is erased.

1

2

3

4

5

unit
at

write
at
write

newton

210
One Story of The Apple!!

405
One day, while sitting under an apple tree, Newton

6 was struck by something . . .

7

8 What was it that struck Newton?

9 arrow 1010
10 specs bumpshift,okextra

11 answer apple
12 at 1205

13 write That is the legend. From this accident, Newton supp

osedly
14 crystallized some ideas on gravity.

15 answer (idea, thought)

16 at 1205

17 write Yes, it was while under an apple tree (and maybe eve

n

18 being struck by a falling apple) that Newton cleared

up

19 some ideas on gravity.

20 wrong eve

21 at 2020

22 write Try again, for what hit

23 Newton under the APPLE

24 tree (apples fall . . .)

25 at 1205

26 write 40!! You are in the wrong era!

Figure 1.7 Code for unit "newton" with more response judging

1.14

Psychology Units

While in sample lesson A, try responses of "parent", "adult" and "child"

at the arrows in the psychology units. By trying all responses at each arrow

you might be able to anticipate what commands will be needed in your lesson

to achieve`. the same results.

Specific directions for the TUTOR code to be inserted in your lesson will

not be given for the psychology units. Enter your lesaon as an author.

'Create a new block called "psychology" after block "physics" (shift "b" to

do this). In block "psychology" create a unit called "pacintrO" which looks

like figure 1.10.

I'M OK -- YOU'RE OK!!

The following questions will
let you practice some of
Thomas A. Harris''ideas on
transactional analysis.

It is assumed that you are
familiar with tho ideas
presented in Harris' book
I'm OK You're OK.

Figure 1.10 Display for unit "pacintro"

1.15

Create another new block after block "psychology" called "wifehus"

(for WIFE and HUSband). In this block insert the necessary code to reproduce

the wife-husband transaction you saw in sample lesson A. Call the unit in

your new block "wifehus". Figure 1.11 shows the display you want to produce

and figure 1.12 summarizes the response judging. A structure similar to

unit "newton" is needed for the psychology units with arrows.

The last psychology unit (man-son transaction) should be inserted in

another new block called "manson". In this new block, which should follow

block "wifehus", insert a unit named "manson" which has the commands to pro-

duce the last psychology unit. Figures 1.13 and 1.14 show the display and

response judging for unit "manson".

To complete this exercise, do all the "checks" described in figure 1.15.

These checks constitute a method for catching subtle errors in your lesson.

There are three areas you should consider:

layout of all displays

response judging

sequence of units

Checking your response judging requires trying not only anticipated correct

and incorrect responses, but also some responses which are obviously incorrect.

1.16

Consider the following exchange:
Husband asks wife: "Where is my blue tie?"

(Asked in normal tone of voice.)
Wife responds: "How should I know, the way you

always dump your junk all over!!"
(Said quite loud and sharply.)

The husband's part of the
interaction is his Adult
component seeking information
from his wife's Adult
component.

Consider the wife's response. Vhich part of the wife
is speaking?

Figure 1.11 Display produced by unit''wifehus"

Student Response PLATO's Message
PLATO's
Judgment

o.,

parent Exactly right. ok

adult Her response (sarcastic
tone) contains more than
information about the tie.

no

child If it 'were the Child, it would
be more self-centered.

no

Figure 1.12 Summary of response judging for unit "wifehus"

1.17

Here is another interaction to analyze:

'Son says to father: "I have a final exam tomorrow.
Even though I've studied well, I feel that I'll

do poorly. My mind is mush right now."

Father: "Don't be upset, Son. Your nerves are

edgy now. In the morning things will look

better."

The son's Child (emotional) component
is seeking reassurance from his
father's Adult component.

Consider the father's response. Which part of the

father is speaking?

Figure 1.13 Display from unit "manson"

Student Response PLATO's Message

PLATO's
Judgment

adult Good. His response is neither
emotional (Child) nor judgmental
(Parent).

ok

child There is no emotional aspect
to the response

no

parent A Parent's response would have
scolded the son for being afraid
or not trying hard enough.

no

Figure 1.14 Summary of response judging for unit "manson"

1.18

Your
checklist Items to be checked while in stu, (t mode

Check the displays: location of writing, sentence
structure, clarity, spelling,
etc.

Compare sequence of units to the flow diagram,
figure 1.4.

Check all anticipated responses to see that PLATO
interprets them as desired.

unit concept of judgment comment
response

newton apple ok (see figure 1.7)
idea ok
eve no

wifehus parent ok (see figure 1.12)
child no
adult no

manson adult ok (see figure 1.14)
child no
parent no

Try some responses with capital letters, "extra
words", and "ignorable words".

Try some obviously incorrect responses.

Figure 1.15 Checklist for Exercise A

2 6

2.1

2. Variety in Displays and Sequencing

'Sized Writing, Rotated Writing, and Drawing Lines

You can easily create eye-catching displays on the plasma panel using

different sized characters. The command used for this is -size-. When

normal size text is displayed, the whole character is plotted on the panel

at once, but in "sized" writing each character is made from line segments

drawn one line at a time. Sized writing is therefore slower than regular

writing. If no -size- command is given, all writing is in regular size,

called "size 0 ". Sized writing may 5e,placed at an angle by use of the

-rotate- command. The tag of the -rotate-.command is the number of degrees

counter-clockwise from the horizontal that the writing is to be rotated. A

-rotate- command only has effect on line-drawn characters, that is, when the

size is other than 0. The normal size characters (size 0) are approximately

the same size as line-drawn characters of size 1. The following unit illustrates

the -size- and -rotate- commands.

unit sizes

size 2.5

at 605
write This is 2.5 times- larger

at 1005
write than normal.
at 1405

write So is this.-
rotate 35

at 2805

write And this is rotated.
size 0

rotate 0

at 3005
write Now we're back to normal.

Figure 2.1 shows how this unit appears on the student's panel. After a -size-

command, all subsequent writing is in that size. The same holds true for

-rotate-. Therefore you must return to normal writing by means of the following

statements:

size 0

rotate 0

27

2.2

This is 2.5 times larger/
than normal .

So is this.

Now were back to normal.

Figure 2.1 Display created by unit "sizes"

2.3

Drawing lines and figures on the panel is done with the -draw- command.

The unit below gives a definition of an acute angle, with the important words

underlined. The underlining is the result of-the -draw- command.

unit acute
at 415
write ANGLES
at 1805

write An acute angle is an angle that is less than 90 degr
ees.

draw 1808;1813;skip;1840;1844

The -draw- statement draws lines under the words "acute" and "less".

The word "acute" begins at position 1808 and ends at 1813; "less" begins

at 1840 and ends at 1a44. The tag of the -draw- command says where to draw

from (1808) and where to draw to (1813). The "skip" means to skip to the

next point mentioned (1840) and draw from there to the last point given

(1844). The positions are separated by semi-colons.

It would be very effective not only to define an acute angle but to

illustrate it as well. This can be done by adding another -draw- command.

1 unit acute
2 at 415

3 write ANGLES
4 draw 938;1325;1340
5 at 1805

6 write An acute angle is an angle that is less than 90 degr

ees..

7 draw 1808;1813;skip;1840;1844

-draw- command on line 4 draws a line from position 938 to 1325 and from

there to 1340. The unit now presents a display as shown in figure 2.2.

The individual entries of a TUTOR tag (such as the points specified in

a -draw- tag) are called arguments. The arguments above are separated by

semi-colons. Other separators are used in the tags of other TUTOR commands.

Many TUTOR commands can have several arguments in their tags.

2 C.

2.4

ANGLES

An acute angle is an angle that is less than 90 degrees.

Figure 2.2 Display produced by unit "acute"

Sequencing of TUTOR Units

So far units have been considered individually. In the context of a

lesson, unit "acute" might be presented, followed by a definition and illustra-

tion of a right angle, and then a definition and illustration of an obtuse

angle. In addition, the topic name "ANGLES" could be displayed in each unit.

Figure 2.3 shows how this portion of the lesson might look. Lines beginning

with the symbol * (lines 1, 9, and 17) are ignored by PLATO when the lesson

is condensed for student use. You may use this symbol to insert comments to

yourself and to make your lesson code more readable. Comments can also be

added after the tag of any TUTOR statement by using the symbol $$ as on

lines 5 and 8. Anything after $$ is ignored by PLATO:

2.5

1

2

3

4

5

6

*Units
unit
at

write
draw
at

on angles
acute
415
ANGLES
938;1325;1340 $$ acute angle

1805

7 write An acute angle is an angle that is less than 90 degr

ees.

8 draw 1808;1813;skip;1840;1844 $$ underlining

9 *

10 unit right

11 at 415

12 write ANGLES

13 draw 925;1325;1340'

14 at 1805

15 write A right angle is an angle that equals 90 degrees.

16 draw. 1807;1812
17 *

18 unit obtuse

19 at 415

20 write ANGLES

21 draw 915;1325;1340

22 at 1805

23 write An obtuse angle is an angle that is more than 90 deg

rees

24 and less than 180 degrees.

25 draw 1808;1814

Figure 2.3 TUTOR code for units on angles

There are three units in this lesson, but how does the student progress

from one to the next? The student starts in the first unit in the lesson.

At the completion of a unit, PLATO waits for the student to press the NEXT

key. When the student presses NEXT he proceeds to the unit physically

following the one he is in, unless the author has specified otherwise. In

the above lesson the student will first see unit "acute", then unit "right",

then unit "obtuse", as illustrated in figure 2.4.

acute
NEXT right

NEXT
obtuse

Figure 2.4 Sequencing of student through angle units

2.6

The statements

at 415
write ANGLES

have to be included in each unit. Titles which will be used several times

can be placed in a separate unit and that new unit can be "attached" to the

units where it is needed by the -do- cothmand.

A unit named "label" can be created:

unit label
at 415
write ANGLES

and then the statements

at 415
write, ANGLES

can be replaced in each of the three units by the single statement

do label

The tag of the -do- command is the name of the unit to be attached. The

contents of unit "label" will be treated as if inserted in the'unit where

the -do- statement occurs. The revised lesson is shown in figure 2.5

Since unit "label" has been inserted'in the lesson, the physical order

of the units na longer corresponds to the order in which they should be

presented to the student. The lesson sequence after unit "acute" must be
specified with a -next- command placed in unit "acute". The unit named in
the tag of the -next- command is the unit which the student will proceed to
when he presses NEXT after completing the current unit. If the current unit

contains questions, it is completed only after all questions have been correctly
answered. Figure 2.6 contrasts the order of the units in the written lesson

with the order in which they appear on the student's panel.

obtuse I

1

2

3

unit
next
do

acute
right- $$ unit "right" is after "acute"
label. $$ attach "label"

4 draw 938;1325;1340
5 at 1805
6 write An acute angle is an angle that is less than 90 degr

ees.

7 draw 1809;1813;skip;1840;1844
8 *

9 unit label $$ attached unit

10 at 415
11 write ANGLES
12 *

13 unit right
14 do label
15 draw 925;1325;1340
16 at 1805

17 write A right angle is an angle that equals 90 degrees.

18 draw 1807;1812
19 *

20 unit obtuse
21 do label
22 draw 915;1325;1340
23, at 1805

24 write An obtuse angle is an angle that is more than 90 deg
rees

25 and less than 180 degrees.

26 draw 1808;1814

Figure 2.5 Revised code for angle units

Physical order of units

acute

label

right

2.7

Order as presented to the student

acute
rdo label'

NEXT

o label;

NEXT

obtuse
ado label;

Figure 2.6 Comparison of unit order

2.8

Erasing Part of a Display

When the student leaves a unit and goes on to another, the entire panel

is automatically erased. Sometimes it is desirable to remain in the same unit,

erase part of the display, and add new information to the display. The commands

-pause- and -erase- are useful in this context.

The -erase- tag may have either of two formats. The first type

at 1215

erase 30

causes 30 characters to be erased, starting at line 12, character space 15.

The second type

at 1215
erase 30,3

causes the erasure of an area 30 characters by 3 lines. Lines 12, 13, and 14

will be erased starting at the fifteenth space and continuing through the

forty-fourth space.

The -pause- command has several forms, one of which has no tag. When a

-pause- with no tag is encountered, PLATO stops processing and waits for the

student to press any key. When a key is pressed, the rest of the unit is

processed. Unit "compang" below uses a -pause- command with no tag.

unit compang
at 1010
write Complementary angles are two angles whose sum

equals 90 degrees.
pause
at 1410
write. Supplementary angles are two angles whose sum

equals 180 degrees.

The first sentence will be written at 1010, and then nothing will happen until

the student presses a key. When he does, the second sentence will be written

at 1410.

Figure 2.7 is a unit containing a rather complicated drawing. There

are two pieces of information about the drawing to be presented to the student.

The -pause- and -erase- commands are used to present one piece of information,

erase it, then present the next piece of information.

The first 13 lines of the unit draw and label a figure and put some text

2.9

1 unit median

2 draw 1325;928;1340;1325;skip;1332;928

3 at 928

4 write A
5 at 1324

6 write B

7 at 1340

8 write C

'9 at 1431

10 write M
11 at 1805

12 write A median of a triangle is a line from a vertex to th

0

13 midpoint of the opposite side. AM is the median to

BC.

14 pause
15 *Wait for student to press a key.

16 *

17 at 1805
18 e =se 9,2

19 d 2;1432

20 a 2

21 wri
22 at 1805
23 write A perpendicular bisector of a side of a triangle is

a line

24 that bisects and is perpendicular to a side. PM is

the

25 perpendicular bisector of BC.

Figure 2.7 Code for unit "median"

on the panel. Figure 2.8 shows how this part of the unit appears on the

student's panel. Then the -pause- command causes PLATO to wait for the

student to press a key. When a key is pressed the first definition is

erased, a new line is added to the drawing, and the second definition is

written in the place of the first. Figure 2.9 shows how the unit looks to

the student after this is done. When large amounts of text are to be dis-

played, the -pause- command with no tag allows the student to read one portion

of the text before another is displayed.

3

2.10

B

M

C.

A median of a triangle is a line from a vertex to the
midpoint of the opposite side. AM is the median to BC.

Figure 2.8 Initial display of unit "median" (before the -pause-)

B

A perpendicular bisector of a side of a triangle is a lin
that bisects and is perpendicular to a side. PM is the
perpendicular bisector of BC.

Figure 2.9 Final display of unit "median" (after the -pause-)

2.11

Displaying Circles

In addition to line segments, circles can be drawn on the panel.

However, to specify the size and location of the circle, the coarse grid

is not used. You must use the more precise positioning scheme called the

fine grid. The fine grid is 512 dots by 512 dots. The dots are numbered

from 0 to 511, figure 2.10, with 60 dots to the inch. Any screen dot may

be referenced in fine grid by giving its x-axis and y-axis location.

Illustrated in figure 2.11 is position 70,210. It is 70 dots from the

left and 210 dots from the bottom of the panel.

I

0 100 200 300 400 511

X AXIS

Figure 2.10 Fine grid positioning scheme

37

2.12

70
DOTS

POSITION 70,210

210 DOTS

Figure 2.11 Fine grid position: 70,210

To draw a circle you must specify the radius in number of fine grid

dots and the fine grid location of the center. The statement

circle 40,126,338

draws a circle with a radius of 40 dots. The center of the circle is 126

dots from the left and 338 dots from the bottom of the panel. A dashed or

broken circle may be drawn with the -circleb- command. The statement

circleb 40,226,338

draws a broken circle with a radius of 40 dots, the center of which is at

fine grid location 226,338.

Partial circles and partial broken circles can be created by including

in the tag the initial and final angles of the partial circle. The positive

x-axis is taken to be 0° and the positive y-axis is 90°.

2.13

circle 40,326,338,0,180

radius x and y locations of center initial angle fina ngle

These three commands are illustrated in figure 2.12. From left to right they

are the 3-argument -circle- command, the -circleb- command, and the 5-argument

-circle- command (the partial circle).

Alf

Figure 2.12 Some circles

2.14

You can use fine grid coordinates with the - -at- command to position

writing more precisely. The format for the fine grid -at- tag is:

x-location,y-location. A comma separates the two fine grid coordinates.

Below is a unit that draws a circle and writes the words "a circle" inside

the figure.

unit circle
circle 40,126,338
at 94,338
write a circle

Fine grid locations can also be part of the tag of a -draw- command.

Each location is set off by a semicolon. If a location is specified in fine

grid, the x and y coordinates are separated by a comma.

draw ;31.120;2213

coarse fine fine coarse

Any coarse grid location may also be given in fine grid because a coarse

grid 17cation is actually an area 8 fine grid dots wide by 16 grid dots high.

Tags of -at-, -draw-, and -arrow- commands, whether in coarse or fine grid,

and tags of -circle- and -circleb- commands may contain arithmetic expressions.

2.15

Exercise B General Comments

The sequencing of a student through the units in exercise B is outlined

in the flow diagram, figure. 13. .
Attached units are indicated by circles

and are attached to main units by dotted lines. Enter sample lesson B

through the index of lesson "introtutor" and use the flow diagram as a

check that you have tried all the units. As you study the sample lesson,

try to anticipate what TUTOR commands you will need.

lio

NEXT

index

newton

draw tree

labeltr

dropapp

NEXT

pacintro
NEXT

wifehus

Figure 2.13 Flow diagram for Exercise B

2.16

The Index

From the author mode display, enter your lesson and change the name of

block "a" to "index". To do this enter block "a", press the LAB key, then

follow directions. Make sure you press NEXT after typing "index" or PLATO

will not remember the name change.

Create a unit "index" ii. block "index" so it resembles figure 2.14.

When your index display suits you, you are ready to insert commands to
handle student responses. The sequence of comniands you willlneed is similar

to what you used in unit "newton":

unit index
*

*TUTOR commands to produce display
*

arrow 810 $$ your tag probably will be different
specs bumpshift
answer a

*commands done only after a response of "a"
answer b

*commands done only after a response of "b"

INDEX

Pick the topic that interests you. Press the letter
next to the topic you desire.

a. Newton

b. PAC (or I'm OK You're OK) 1

Figure 2.14 Display from unit "index"

2.17

In exercise A you saw that commands after an -answer- or -wrong- command

and before another -answer- or -wrong- command are done only if the student's

response matches that particular -answer- or -wrong- command. To branch

according to a student's response, you will need a -next- command after

each -answer- command. The tags of the -next- commands will be the name of

the unit the student should see next when his response matches the preceding

-answer- command. Insert the necessary commands so your unit "index" branches

the student appropriately and then try your lesson in student mode.

Your lesson sequencing is not yet like that shown in the flow diagram

since the student is not returned to unit "index" after completing the topic

he chose. To return the student to unit "index" you will need -next index-

statements in the last units of both topics. These -next index- statements

should be placed immediately after the -unit- command. Condense your lesson

and check the new sequencing.

Physics Units

The display changes in unit "newton" require using sized writing, drawing

a tree, labeling the tree, and dropping an apple. The last three require

attaching units with -do- commands, because these units will be attached in

several different places later in the exercises. The attached units should

be placed in a new block in your lesson entitled "do newton".

One of the attached units should draw a tree resembling the tree in

figure 2.15. Call this unit "drawtree". Your tree need not be identical to

the sample lesson's tree. Concentrate on becoming familiar with locations

on the panel rather than duplicating the sample lesson's tree. The second

attached unit, "labeltr", should write "apple tree!" on the trunk and "apple"

in the branches. The last unit in block "do newton", named unit "dropapp",

will drop the apple from the tree. To do this you will need a series of

commands similar to those in figure 2.16. Each -circle-, -at-, and -erase-

command will move the apple once. The last command in the unit should be

-circle- so the apple is not erased from the panel.

2.18

One Story of The Apple !!

One day, while sitting under an apple tree, Newton
was struck by something. . .

What was it that struck Newton?

aPPle

Figure 2.15 Display for unit "newton"

1 unit dropapp $$ unit to drop apple
2 circle 4,178,224
3 at 172,220
4 erase 2

5 circle 4,178,223
6 at 172,219
7 erase 2

8 circle 4,178,219
9 at 172,215

10 erase 2

11 circle 4,178,210
12 at 172,206
13 erase 2

14 circle 4,178,194
15 at 172,190
16 erase 2

17 circle 4,178,169
18 at 172,165
19 erase 2

20 circle 4,178,133
21 at 172,129
22 erase 2

23 circle 4,178,84

Figure 2.16 Unit "dropapp" drops the apple

4i,

2.19

Since the labeled tree should appear on the panel before the student is

asked the question, the corresponding -do- commands should be inserted before

the -arrow- command. The apple should drop from the tree only after the

student answers correctly, so the appropriate -do- command should be inserted

after each -answer- command.

Psychology Units

The display changes in unit "pacintro", as'seen in figure 2.17, require

using sized writing, underlining with a -draw- command, and adding three

circles. To position the letters P A C in the centers of the circles, you

may need to use fine grid tags with the -at- commands. There is an editing

directive named 'id" (insert a display) which facilitates the creation of

displays. To try this press "id" from the line listing display, then NEXT.

Help is, available while using the "id" option by pressing the HELP key.

11NA OK ----'YOU'RE OK H

The following questions will
let you practice some of
Thomas A. Harris' ideas on
transactional analysis.

It is assummed that you
are familiar with the
ideas presented in Harris'
book I'm OK You're OK.

Figure 2.17 Display from unit "pacintrou

2.20

Both of the units which depict interactions (see figures 2.18 and 2.19)

will require the same types of changes. Circles and lines are needed for

the graphic representation of the interactions. Since the same circles

are used in units "wifehus" and "manson", a new unit should be created, named

"circlpac", which can be attached by -do- commands. The lines are not the

same in the two units, so different -draw- commands are required.

To complete this exercise, refer to the checklist in figure 2.20 while

using your lesson in student mode.

Consider the following exchange:
Husband asks wife: "Where is my blue tie?"

(Asked in normal tone of voice.)
Wife responds: "How should I know, the way you

always dump your junk all over!!"
(Said quite loud and sharply.)

Husband Wife

The husband's part of the
interaction is shown at the
left. It is his Adult component
seeking information from his wife's
Adult component.

Consider the wife's response. Which part of the wife
is speaking?

Figure 2.18 Display from unit "wifehus"

4 .3

2.21

Here is another interaction to analyze:

Son says to father: "I have a final exam tomorrow.

Even though I've studied well, I feel that I'll

do poorly. My mind is mush right now."

Father: "Don't be upset, Son. Your nerves are

edgy now. In the morning things will look

better."
Son Father

The son's statement is
analyzed at the left. His

Child (emotional) component
is seeking reassurance from his
father's Adult component.

Consider the fa er's response. Which part of the

father is speaking?

Figure 2.19 Display from unit "manson"

your
checklist Items to be checked while in student mode

Compare the sequence of units to the flow diagram, figure 2.13.

Check the displays:
Does your unit "index" resemble figure 2.14?

Does your unit "newton" resemble figure 2.15?

Does your unit "pacintro" resemble figure 2.17?

Does your unit "wifehus" resemble figure 2.18?

Does your unit "manson" resemble figure 2.19?

Check the animation:
Does the apple drop after a correct response?

Is the old apple erased?

Does the last apple remain on the sanel?

Figure 2.20 Checklist for Exercise B

3.1

3. Doing Calculations and Using Variables

Student Variables

In order to individualize a lesson, write lessons efficiently, and

make use of the power of the PLATO computer, you will need to store and

use numeric information which may change in value as the student proceeds

through the lesson. For example, you may wish to keep a record of how

many errors a student makes so that you can have your lesson give the

student some review after a given number of errors. This sort of infor-

mation can be kept in storage locations w.thin the computer called student

variables. When a student is registered 'n LATO, 150 student variables

are reserved for him. These student varia:A .s are unimaginatively called

vl, v2, v3...v148, v149, v150.

These variables are called student variables because each of the many

students who may simultaneously be studying your lesson has his own private

' set of 150 variables. You might use variable v23 to count the number of

correct responses on a certain topic, which will be different for each

student. If there are forty students working on your lesson, TUTOR is

keeping track of forty different "v23's", one for each student. This is done

automatically for you, so that you can write the lesson with one individual

student in mind, and v23 may be considered simply as that individual student's

count of correct responses. Thus one student might be sent to a remedial unit

because his variable 23 shows that he did poorly on this topic. Another

student might be jumped ahead because her variable 23 indicates an excellent

grasp of the material. It is through manipulation of the student variables

that a lesson can be highly individualized for each student.

The -calc- command is used to store a number in a variable or to change

the number in a variable. The statement

calc v22+-6.3

causes the value 6.3 to be placed in the twenty-second variable. The above

-calc- statement is read, "Assign the value 6.3 to the twenty-second variable."

4

3.2

The statement

calc v16÷v12

causes the value stored in variable 12 to be assigned to variable 16 (the

value in v12 is not changed). Not only constants and variables, but arithmetic

expressions can be used in -calc- statements. Upon encountering the statement

calc v31÷14+2x6

PLATO evaluates the expression on the right of the assignment arrow (+) and

stores the result, 26,in v31. The order of operations in TUTOR is exponen-

tiation, multiplication, division, addition and subtraction. Addition and

subtraction are done in order of occurence, from left to right. Operations

inside parentheses are done before the whole expression is evaluated, so

while 14+2x6 gives a result of 26, the expression (14+2)x6 gives the result

96. The arithmetic symbols and the assignment arrow are on the black keys

on the left of the keyset. Figure 3.1 summarizes the order of arithmetic

operations in TUTOR and figure 3.2 illustrates some calculations in TUTOR.

A specialized TUTOR calculational command is -zero-, which assigns the

value 0 to a variable. The statements

calc v83÷0
zero v83

are equivalent. If you need to set many consecutive variables to 0, use

zero v7,30

This puts the value 0 in 30 consecutive variables, starting at v7. The

variables v7, v8 . . . through v36 will all contain 0.

Order
of

Operations

First

Last

Operation

exponentiation

multiplication

division

addition, subtraction

Examples

v12
3

(use SUPER key)

v21x4 or v21*4

100W17 or 100/v17

v42+31

1043-v75

Figure 3.1 Order of arithmetic operations in TUTOR

4

3.3

-calc- statement

calc v6÷0

calc v6÷11

value of v43

--

value of v6

0

11

calc v434 -10
3 1000 11

calc v6{-1 +v6 1000 12

calc v6÷4xv6 1000 48

calc v43+v43 -170 830 48

calc v43÷v43:100 8.3 48

calc v43+-v6-1-v43*10 131 48

calc v64-(25÷v6i-8-v43)/10 131 -10

calc v434((v6)2+6xv6)/5 8 -10

Figure 3.2 Some calculations in TUTOR

Giving Variables Meaningful Names

TUTOR statements containing student variables will be more readable if

the variables are given meaningful names. You can create your own names with

the -define- command:

define wrongs=v1,percent=v2,radius=v3

Throughout your lesson now you can use "wrongs" in place of "v1", "percent"

instead of "v2", and "radius" in place of "v3". The names must be 7 or fewer

characters and may not begin with a number or contain a mathematical operator.

If defined names are not used it will be difficult to remember that v3 contains

the radius and not, say, the percent.

The -define- statement tells TUTOR how to interpret the descriptive

names when they are encountered in other statements. The -define- statement

must precede the first reference to any of the defined names. It is convenient

to place the -define- command in what is called the initial entry unit, or i.e.u.

The i.e.u. consists of commands at the beginning of the lesson which precede

the first -unit- command. The i.e.u. is automatically executed every time

someone enters the lesson.

3.4

If you wish you may give a name to the set of defined names:

define setname,wrongs=v1,percent=v2,radius=v3

The name of the set (like the namesof variables) must be 7 or fewer characters

and may not begin with a number or contain an operator.

Through the use of variables you can make your lesson quite flexible.

The following units use variables to draw a circle at different points on the

display panel.

1 define mynames, radius= vl,centerx= v2,centery =v3
unit drawit $$ the i.e.u. is above this unit statement

3 calc radius÷20
4 centerx 35O

centery+80
6 do circles
7 calc centerx÷200
8 centery±185
9 do circles

10 calc radius4-80
11 do circles
12 *

13 unit circles
14 circle radius,centerx,centery

On lines 3 5, the initial values are stored in the three variables.

If a -calc- statement is continued for more than one line, you do not have

to repeat the command. Unit "circles" is attached (line 6), drawing a circle

with a radius of 20 dots. Its center is at fine grid location 350,80. Lines

7 and 8 set up a new center by putting new values in variables "centerx" and

"centery" in place of the old ones. When unit "circles" is attached again

(line 9), the new circle is the same size (radius), but its center is at a

different place: 200,185. Line 10 puts the new value 80 in "radius". The

variables "centerx" and "centery" have not been changed; they still contain

the values 200 and 185 respectively. When line 11 is executed, the resulting

,:ircle will have the same cehter as the second circle, but a larger radius.

3.5

Displaying Values of Variables

You can display on the panel the value of any variable by using the

-show- command. The -show- command displays the value with no spaces

preceding or following the number. Other commands display the values of

variables in different formats. Unit "showing" evaluates an expression,

stores the result in a variable, and displays it.

define area=v67
unit showing
calc area3.14x4-
at 1205

show area

If you want to display a value in the middle of some text, you may do it

either of two ways. In unit "ashow" a space must be left after the word

"is" in the first - write- tag and before "square" in the second -write-

tag.

unit show
calc 14

at G'514'3.

4

write The area is $$ space here for nice display

show area
write square feet. $$ space before "square"

unit bshow
calc area-,-3.14),4'

at 1205

write The area is <s,area> square feet

These two units do exactly the same thing. The (> are called "embed"

symbols, because they allow you to embed the -show- command in the tag of

the -write-. To type the embed symbols, strike the shifted D key, then 0

for Q or the shifted c and 1 for the > . The shifted= key is called

ACCESS. It is to the right of the HELP key. The first argument within the

embed symbols stands for which show-type command you want (s for -show-,

t for -showt-) and the second is the name of the variable to be shown.

3.6

Displaying Tables of Numbers

The -shcw- command displays numbers with no leading spaces so a
table of numbers will be aligned with some left margin if a show is

used. However the standard table format has the entries aligned along a

right margin. The -showt- command will display a set of numbers with this

format. The statement

showt v7

will display the current value of v7. The location of writing by a -showt-

command is determined by the preceding -at-. The statements

calc radius*-2S,...,...$$ "radius" is defined
at 1817

showt 2x7radius

will display a circumference value of 131.947starting at line 18 and

character 17 (27x21=131.947),

When displaying a table of information, it is'often convenient to use

an expression in the tag of an -at- command which is a function of some

initial location in a table. The expression can be incremented by 100
after each lin4 of data in a table is displayed so the following line of

data is placed in an appropriate location.

The units in figure 3.3 display several circles and a table of radii

and circumferences; refer to figure 3.4. The locations for the -showt-

commands are a function of a point of reference (line 12) and are incremented

by 100 (line 30) after each line of data is displayed. The location of

the circumference (27xradius) is always 20 characters to the right of radius

(line 26).

3.7

1. * "place" and "radius" are defined in the i.e.u.

2 unit
3 at

4 write
. 5

6 draw
7

8 at

9 write
10 at

11 write
12 calc
13

14 do

15 do

16 do

17 do

18 do
19 do

20 do

21 do

22 *

23 unit circ

24 pause
25 circle radius,90,230

26 at place

27 showt radius

28 at place+20
29 showt 27rxradius

30 calc place+place+100 $$ move down 1 line

31 calc radiusi-radius+10 $$ increase the radius

table
407
Table of radii and circumferences. Press NEXT for

each entry to be displayed
1224;2424;2462;1262;1224;skip;1424;1462;skip;1243;
2443
230,296
radius
360,296
circumference
place --1628 $$ point of reference
radius --1 $$ set initial radius

circ
circ
circ $$ 8 table entries, 1 for each -do-

circ
circ
circ
circ
circ

Figure 3.3 TUTOR code for radii and circumferences table

3.8

Table of radii and circumferences. Press NEXT for
each entry to be displayed.

radius circumference

1.000 6.283
11.000 69.115
21.000 131.947
31.00 194.779,
41.000 257.611
51.000 320.442
61.000 383.274
71.000 446.106

Figure 3.4 Student display of radii and circumferences table

Systems Reserved Words

In addition to student variables, there are about 40 "systems reserved

words". These are variables, like student variables in that each student

has his own set. You may show their values and use them in expressions, but

you may not change these values. The systems reserved words contain information

authors frequently need. One of the reserved words is "ntries"; it contains

the number of tries a student has made on a question (-arrow-). Another very

useful systems reserved word is "where", which contains the coarse grid loca-

tion of the last panel activity. The following unit shows how "where" can

be used.

unit symbol
at 1010
write The symbol for "communication link" is
draw where+2;where+7;(where-100)+5;(where-100)+10

Figure 3.5 shows how this unit looks on the student's panel. The -draw -

command draws a figure composed of three line segments. The first is 5

characters long and begins 2 spaces to the right of the word "is" on line 10.

The next segment is a diagonal line running from the end of the first line

segment up to the ninth line, determined by the expression (where-100), at

5 character spaces to the right of the word "is"; and the last segment is a

straight line from this previous position to the tenth character space to

0 `)

3 . 9

the right ofothe word "is". The symbol is drawn right after the senzence,

and by using "where" you do not need to count all the characters in the line

to determine where to place the drawing. The systems reserved words "wherex"

and "wherey" contain the x and y positions in fine grid of the last writing

or drawing. They may be used like "where" when you are using fine'grid.

The symbol for "communication is

Figure 3.5 Display froth unit "symbol"

3.10

Exercise C - General Comments

The physics topic has been expanded to include a table which illustrates

the-relationship between time and distance as an apple falls to the ground.

The order of the physics units is described in the flow diagram figure 3.6.

In this and subsequent exercises, attached units are not shown on the flow

diagrams. Use sample lesson C and try these units.

The Initial Entry Unit

-n this exercise, the defined variables "radius", "xcenter", "ycenter",

"time", "locate", and "pacerr" are used. To insert the -define- command

on the first line of block "index" (before the -unit index- statement)

use "i0" as the editing directive. This places the -define- statement

ahead of the first -unit- command, creating an initial entry unit. You

should use consecutive variables (e.g. vl through v6) in the tag of the

-define- statement. This allows you to tell at a glance which of the 150

student variables you have already used.

index newton NEXT

NEXT

newdata

NEXT

pacintro
NEXT.

wifehus
NEXT

if manson
>

Figure 3.6 Flow diagram for Exercige
\

C

3.11

Physics Units

When the apple was dropped in the previous exercises, a non-mathematical

approach was used. However, Newton discovered that the distance an object

falls is directly related to some constant force (gravity) multiplied by

the square of the time. Therefore, the y-coordinate (distance) will decrease

as a function of the time squared. Unit "dropapp" is to be rewritten using

this principle.,

The revised unit "dropapp", figure 3.7, sets the initial values for

the radius of the apple, the location of the apple, and the time which the

apple has been falling. Before the apple is drawn at a new location, the

apple at the old location must be erased. This is accomplished by unit "move".

In unit "newapp" the variable "time" is incremented, and the location of the

new apple is determined. The radius and the x-coordinate remain unchanged.

The new y-coordinate is found by subtracting the amount of movement (time x

time x 4) from the initial y-coordinate. (The "4" is merely a scaling factor.

You may need a different value for your tree.) This is done in the tag of the

-circle- command. Each time the apple is moved the same process must be re-

peated. Therefore several -do- statements are required in unit "dropapp".

The essential features of the new physics unit, figure 3.8, are:

writing the text

drawing the tree

writing the table outline and headings

setting the radius and initial location for the apple

displaying the apples

displaying the data in the table

The data in this unit can be displayed at a location which is a function of

some point 'of reference. An analogous structure was used in the units in

figure 3.3 to display the table of data in figure 3.4. Use figures 3.3, 3.4

and 3.8 as well as the sample lesson as a guide in constructing your new units.

3.12

I unit dropapp $$unit to drop the apple
2 calc radius÷4 $$initialize variables
3 xcenter(-178

4 ycenter±224
5

6 do move $$one -do- for each move of the apple
7 do move
8 do move
9 do move

10 do move
11 do move
12 do move
13 do drawtree $$patch up the tree
14 *

15 unit move $$this unit erases the old apple
16 at xcenter-4,ycenter-4-time

2
x4

17 erase 2

18 do newapp
19

20 unit newapp $$this unit calculates new apple position
21 * and draws the new apple
22 calc time÷time+1
23 circle radius,xcenter,ycenter-timextimex4

Figure 3.7 TUTOR code which drops the apple

The relationship that was observed between

time after start of fall
and

total distance fallen

will be shown below as the apple falls. To

move the apple one time interval, press NEXT.

total distance
fallen (feet)

total time in
fall (114 sec)

t

Figure 3.8 Initial display for unit "newdata"

3.13

Psychology Units

For the psychology units, the number of incorrect components entered by

the student will be tallied in a student variable named "pacerr". For an

accurate count to be made, the defined variable must be set to 0 initially.

It is convenient to do this in unit "pacintro". After each -wrong- command

the error counter should be incremented by 1. Af r a correct response in

unit "manson" an additional comment should be displayed: "You entered

(display number of errors using -show-) incorrect components when responding

to the psychology questions." To complete this exercise use the checklist

provided in figure 3.9 as a reference when reviewing you lesson.

your
checklist

Items to be checked in student mode

Compare the sequence of units to the flow diagram, figure 3.6.

Check the displays:
Does your unit "newdata" resemble figure 3.8?

Is the error message displayed correctly in unit "manson"?

Check the calculations:
Are the entries in the table for unit "newdata" correct"?

Does "pacerr" count incorrect components entered by the

student?

Figure 3.9 Checklist for Exercise C.

44.1

4. Conditional Operations

Conditional Branching

The use of variables can make a lesson quite flexible. Another tool

for flexibility is conditional operations, that is, operations that are done

only when a certain condition is met. Conditional commands in TUTOR are of

the form

command expression,tagneg,tag0,tagl,tag2 .

When a conditional command is encountered, PLATO evaluates the expression

and rounds it to the nearest integer. If the integer is negative, tagneg is

used. If the integer equals 0, tag0 is used; if the integer equals 1, tagl

is used; and so forth. Below is a conditional -do- command.

do vl,rivers,oceans,islands,x,plains,x

Upon encountering this command, PLATO determines the rounded value of vl.

If this is a negative number, unit"rivers' will be done. If it equals 0,

unit"oceans" will be done; if it equals 1, unit"islandsg will be done. If it

is equal to 2 or is equal to or greater than 4, nothing will be done. The

x's in the tag are not unit names, an x means "Do nothing for this value."

Since x has this specialized meaning a unit cannot be named "x". The effect

of the above -do- statement is summarized in figure 4.1.

do vl,rivers,oceans,islands,x,plains,x

value of vl unit which is attached equivalent unconditional
-do- statement

negative value rivers do rivers

0 oceans do oceans

l' islands do islands

1.2 (rounded to 1) islands do islands

2 no unit is attached (no -do- statement)

2.5 (rounded to 3) plains do plains

3 plains do plains

4 and greater than 4 no unit is attached (no -do- (statement)

Figure 4.1 Conditional -do- statement

6 1

4.2

Commas are used as separators in conditional commands. The last argument

in the tag will be used if the rounded value of the expression is equal to or

greater than the number of the last position in the tag. For example:

do 6:v24-5,x,x,x,drawing

Unit "drawing" will be done if the expression, 6-",v24-5, is equal to or greater
than 2.

Conditional Writing

Of the commands discussed so far, -next- and -do- can be used condition-

ally. There is a special form of the -write- command, -writec-, (pronounced:

write see) for conditional writing. Here is an example.

writec mistake You have made no errors.,You have made 1 er
ror.,You have made several errors.

When "mistake" has a negative value, nothing is written. With the -writec-

command nothing is written between the separators when no operation is desired.

Another separator, I , may be used instead of commas with a -writec- command.

To type x strike ACCESS (shifted ED , to the right of HELP), then comma. This

allows the writing of sentences containing commas; e.g.

writec verbtypz:The verbs "faire", "aller", and "avoir" are irr
egular4
This is a regular verb.

Whichever symbol (, or I) immediately follows the expression will be the

separator for the entire tag of the -writec- statement.

In unit "twain" below, different sentences are written on the panel

depending on how many attempts the student has made to answer the question.

1 unit twain
at 815

3 write Who wrote "The Prince and the Pauper"?
4 arrow 1013
5 answer Mark Twain
6 write. That's right.
7 answer Samuel Clemens
8 write Correct. His pen name was Mark Twain.
9 no

10 writec ntriesn/He also wrote "Life on the Mississippi".:
11 He creased the characters Aunt Polly and Injun Joe. I
12 Hint: His initials are M.T.

6.3

4.3

Figure 4.2 illustrates the unit in flow chart form. Lines 1 through 4 write

the question and plot the arrow. Line 5 specifies a correct response. If

the student's response matches the tag of line 5, line 6 will be executed.

If it does not match, it is compared to the tag of the following answer-type

command, in this case line 7. If they match, the response will be judged "ok"

and the -write- command on line 8 will be executed. The -no- command on line

9 causes any unanticipated response to be judged "no". Commands below the

-no- are executed if the student's response does not match any previous

- answer or -wrong- commands. If the student types anything other than "Mark

Twain" or "Samuel Clemens", he will receive a "no" judgment, and the -writec-

command will be executed. Which one of the sentences in the tag of the -writec-

will be displayed depends on the value of the systems reserved word "ntries".

If he has made one attempt, the sentence "He also wrote 'Life on the Mississippi',"

will be written. If he has made two tries, he will see the sentence "He created

the characters Aunt Polly and Injun Joe." If he has made three or more attempts,

the sentence "Hint: His initials are M.T." will be displayed.

Exercise D - General Comments

The sequencing of the student through the units in exercise D is shown

in the flow diagram, figure 4.3. A short review has been added to the psychology

topic. Use sample lesson D and try these new units.

Psychology Units

In unit "pacintro" the student may select a short review. Depending on

his response to the question "Would you like a brief review of how Harris

analyzes transactions?" the student is branched to unit "numcomp" (for re-

view) or unit "wifehus". This branching is done in the same way as the

branching in unit "index".

The review branch consists of three new units, "numcomp" (for NUMber

of COMPonents), "charcomp" (CHARacteristics of each COMPonent), and "interact".

The units can be added in a new block called "pac review". Unit "numcomp"

presents the question "Harris thought of each individual as having different

4.4

student
presses
NEXT

0

I

erase no
I

,

erase last
student re-
sponse, erase
comment

write "no"

at 815, write
Who wrote the
Prince and the
Pauper '2

plot arrow
at 1013

wait for stu-
dent response

student enters a

response and press-
es NEXT

no

yes

yes

no

write
"That's right"

write "Correct.
His pen name
was Mark
Twain.

determine val-
ue of ntries

write He also
wrote 'Life on
the Mississippi

write He cre-
ated the char-
acters Aunt Polly
and Injun Joe

write 'Hint:
His initials
are M.T.

ntries
greater than

2

Figure 4.2 Flow diagram for unit "twain"

6

go on to next
unit when stu-
dent presses
NEXT

manson

4.5

NEXT

NEXT

wifehus

index

7

a

No

NEXT

pacintro

NEXT

newton

NEXT

newdata

interact NEXT

Figure 4.3 Flow diagram for Exercise D

components. How many components did Harris identify ?" The judging and

comments for this question arc summarized in figure 4.4. Unexpected wrong

responses are handled by a -no- command and a comment is written with a

-writec- based on the number of attempts as given by "ntries". After a

correct response, a comment is given to the student as presented in figure

4.5.

The last two review units consist of display material only. Unit

"charcomp" should resemble figure 4.6, and unit "interact" should resemble

figure 4.7. After unit "interact" the student should proceed to unit

"wifehus" as indicated in the flow diagram.

4.6

Student
Response

PLATO's
Judgment

PLATO's
Comment

3

three
ok (refer to figure 4.5)

2, two
4, four

no Close. Try again.

5, five
6, six
7, seven
8, eight
9, nine

no A smaller number

all other
responses

no 1 attempt: There are not many.
2 attempts: (no comment)
3 or more attempts: There are

3 components.

Figure 4.4 Response judging for unit "numcomp"

HarriS thought of each individual as having different
components. How many components did Harris identify?

3 el:

Correct. Here is a brief summary of the three components.

Harris' idea is that each of us consists of three
components. In any interaction, one of the three
components is active.

Parent: The judgmental and moralistic
component

Adult :: The information gathering and
evaluating part

Child: The emotional side

Lure' Jiisplay after correct response in unit "numcomp"

4.7

Here is more detail on the characteristics of
the three components:

Parent: The Parent usually speaks with an

authoritarian tone. Moralizing and judging

are frequent. Words like "never" and "always"
are often in the Parent's vocabulary.

Adult: Seeking and analyzing information is the

Adult's arena. "Why", "how", "when" are typical

questions. Objectivity rules the Adult.

Child: The Child represents our emotional aspect.
Crying, joy, sorrow all the emotions -- are
carried out by the Child. Most clues to the Child
being active are physical clues: tears, pouting,
laughter, squirming.

Figure 4.6 Display from unit "charcomp"

When analyzing a person's statement you must determine

both ends of the interaction.

Which part of the person
speaking (Parent, Adult,
or Child) is actually
saying the words?

To which part of the
person being addressed
(Parent, Adult, or Child)
Is the message directed?

Pisan: 4.7 Dispiay from unit "interact"

4.8

Using the -no- Command

For each question in sample lesson D there is a comment given if the

student enters an unanticipated response. The comments, which are summarized

in figure 4.8, provide hints to the student. Since the same comment is used

in units "wifehus" and "manson" you can write the comment in a unit and

attach it in both places with -do- commands. In exercise C a tally of

specific wrong answers for the psychology topic was kept. Since all in-

correct answers are to be included in this tally, "pacerr" must be incremented

after each -no- command. Follow the checklist in figure 4.9 when reviewing

your lesson.

unit PLATO's comment following -no-

index Please enter a listed letter.

newton Try a little bit of logic, please. Newton is under
an apple tree. Apples are above him. One gets loose
and falls...

pacintro Please respond with "yes" or "no".

wifehus
and

manson

Please enter one of the components:
Parent, Adult, or Child.

numcomp (Use -writec- with "ntries")
If "ntries" equals 1: There are not many.
If "ntries" equals 2: (no comment)
If "ntries" is 3 or greater: There are 3 components.

Figure 4.8 -no- comments for each question

4.9

your
checklist Items to be checked in student mode

Compare the sequence of units to the flow diagraM, figure 4.3.

Do the new psychology units resemble figures 4.5, 4.6, and 4.7?

Are the -no- comments correct, as in figure 4.8?,

Is "pacerr" incremented after -no- in psychology units?

Figure 4.9 Checklist for Exercise D

5.1

5. Branching the S44dent

.Branching Via Function Keys

Branching commands in TUTOR are of two types: those which cause

a branch when the command is encountered (-do-, - join -, -goto-, -jump-),

and those which set up a branch path to be followed when the student

presses a function key. The function keys are NEXT, BACK, HELP, LAB,

DATA, TERM, shift-NEXT, shift-BACK, shift-HELP, shift-LAB, and shift-DATA.

The shifted function keys ale abbreviated NEXT1, BACK1, etc. The commands

which activate the function keys have the same names as the keys, i.e. -ne-t-,

-nextl-, -help-, -helpl-, etc.

When a student presses one of the function keys he is branched to a

new unit if the author has so specified. For example:

unit verbs
next adverbs
back nouns
at 2520

write Press NEXT to go on, BACK
to review

If the student presses NEXT he goes on to unit "ad Verbs". Pressing BACK

tikes him to unit "nouns". Pressing any of the other function keys has no

effect because there are no corresponding commands in this unit. As we saw

in Chapter 2, however, NEXT is always active; and if there is no -next-

command then the unit physically following the/present one is the next unit.

Main Units

Each time the student enters a unit as a result of pressing a function

key (e.g. HELP, NEXT) or because of a -jump- command, the student has entered

a new main unit. When each main unit is entered the plasma panel display is

erased. Units which are attached to a main unit by -do-, -join-, or -goto-

commands (-join- and -goto- will be discussed in Chapters 7 and 11) are called

7,)

5.2

attached units. In the example code below, the main unit is "newton'!
'

and

the attached unit "drawtree" has been inserted into unit "newton" by the -do-

command.

unit newton
at 206
write One day Newton was sitting under a tree...
do drawtree

more TUTOR code

unit drawtree
a tree is displayed with -draw- command

The -jump- Command

An immediate branch to a new main unit can be created with the -jump-

command. The tag of the -jump- command is the name of the unit to "jump"

to. When a -jump- command is encountered, the student is sent immediately

to the unit named in the tag, without pressing a key. The -jump- command

may be used conditionally. In the sequence of units in figure 5.1, the

student is immediately branched, with the -jump- command, to one of three

different units, depending on his choice.

If the student's response matches the tag of one of the -answer- ccmmands,

he will be sent immediately to the corresponding unit. A response other than

"a", "b", or "c" will be judged "no" and the message "Please choose a, b, or

c" will he displayed.

Help Sequences: Establishing a Base Unit

Branches by the HELP, LAB, DATA, HELP1, LAB1, and DATA1 keys differ from

branches by NEXT, NEXT1, BACK, and BACK1, in that the first group (collectively

referred to as help-type keys) initiate help sequences. In a help sequence,

the unit the student was in when he pressed the help-type key is "remembered"

and the student is returned to that unit when the help sequence is ended. The

unit in which the help-type key was pressed is called the base unit.. The end

of a help sequence is marked by an -end help- statement. Pressing NEXT in

a unit containing an -end- command, or pressing BACK or BACK1 in any unit in

a help sequ._ze, returns the student to the base unit. The units in figure

5.2 illustrate a help sequence.

unit index

at 520
write Choose a topic:
at 810

write a. Trigonometry
b. Graphing
c. Algebra

arrow 1515

specs bumpshift
answer a

jump trig

answer b

jump graph
answer c

jump algebra
no
write Please choose a, b, or c.

unit trig

more TUTOR code

unit graph

more TUTOR code

unit algebra

more TUTOR code

Figure 5.1 An index using -jump-

5 . 4

1 unit jef
2 next madison
3 help hint
4 at 810
5 write Who was the third president of the United States?
6 arrow 1110
7 at 1510
8 write If you need a hint, press HELP.
9 specs bumpshift,okextra

10 answer jefferson
11

12 unit hint
13 next hint2
14 at 903
15 write He authored the Declaration of Independence.
16 at 1505
17 write Press NEXT for more help;
18 Press shift-BACK to return to the question.
19 **

20 unit hint2
21 at 905
22 write He campaigned vigorously for religious freedom and c

ivil
23 rights.
24 at 1505
25 write Press NEXT to return to the question.
26 end help
27 **

28 unit madison
29 at 810
30 write Which president followed Jefferson?
31 arrow 1110
32 specs bumpshift,okextra
33 answer madison

Figure 3.2 Code for four units on presidents

If the student presses the HELP key while he is in unit "jef" he is

branched to the unit named in the tag of the -help- command, unit "hint".

If in unit "hint" he presses NEXT, he will go on to unit "hint2". From

"hint2" pressing NEXT returns him to the base unit, "jef", because of the

-end help- statement in "hint2". A flow chart of these units (figure 5.3)

iilu-:trat(s what unit the student will in when Iii presses various keys.

jef
HELP

/ BACK or
BACK1

hint

NEXT, BACK, or BACK'

5L5

NEXT after a correct response

Figure 5.3 Flow chart for units on presidents

All branching commands may be used conditionally. The unit in figure 5.4,

unit "metric", uses one of two different help sequences, depending on how

many errors the student has made. (Assume the variable "wrongs" has been

defined, and has been used to count the number of errors made by the student

in an earlier part of the lesson.) In this example only students who have

made 2 or more errors will have a help sequence available. Those who have

2 errors will be sent to unit "table" if they press HELP; those with 3 or

more errors will he sent to unit "explain". The x's in the tag of the -help-

command specify that no HELP branch will be made for students who have fewer

than 2 mistakes. The message "HELP is available" is written only if "wrongs"

is 2 or greater. Students who have made no mistakes, or only one, will not

see the help message. With conditional commands, the expression is evaluated

and the branch path for possible later use is established when the command

is encountered, not when the branching key is pressed.

When the student enters unit "metric" his variable "wrongs" is evaluated.

If he presses HELP he will proceed to unit "table" if the value in "wrongs"

was equal to 2, or to unit "explain" if the value was greater than 2. Notice

the -end- commands in each help unit. Pressing NEXT from either of the units

caTi.. a return to the base unit, "metric". BACK and BACK1 also return the

student, to the base unit.

5.6

unit metric
help wrongs,x,x,x,table,explain Wwrongs" was tallied earlier
at 805
writec wrongs,,,,HELP is available
at 1205

write What is the equivalent in British pints of 4 liters?
arrow 1405

more TUTOR code

unit explain
at 905
write To convert liters to British pints, multiply by 1.75

9804
end help

unit table

some TUTOR code to display a table of
conversion factors

end help

Figure 5.4 Help sequence used conditionally

Units can be thought of as main units or attached units, main units

being those reached by a keypress or a -jump- command and attached units

being those reached by -do-, -join-, or -goto-. The term "base unit" is

applicable only when the student is in a help sequence. The base unit is

the unit in which he pressed the help-typo key. When the help sequence is

terminated and the student returns to the unit from which he entered the

help sequence, he no longer has a base unit.

In figure 5.5, all main units are represented by rectangles. Units

attached to the main units by -do- (-join- or -goto-) commands are circles.

When a student is in a main unit with a * in the upper left corner, the base

unit pointer is set because these main units were reached by pressing the

DATA key. The base unit is the unit from which the DATA key was pressed.

-do-

jump

NEXT -do-

DATA

NEXT
V

NEXT

5.7

BACK or

BACK1

Figure 5.5 Main, base, and attached units

end help

NEXT,
BACK or
BACK1

5. 8

Exercise E General Comments

The review units for the psychology topic are now used in three

different ways, as indicated in the flow diagram, figure 5.6. These units

still function as a review based on the student's response to the question

in unit "pacintro". The units also serve as a help sequence from units

"wifehus" and "manson". The third use of this review material is as a

compulsory review if the student has made 3 or more errors when responding

to the transactional analysis questions. The sequencing of the student

through the review units for the optional branch from unit "pacintro" and the

forced branch from unit "manson" is controlled through the use of student

variables.

Use of the -help- Command

From unit "wifehus" if the student presses HELP, he should proceed to

unit "numcomp", then unit "charcomp", then "interact", and from there he should

he returned to his base unit ("wifehus"). If the student presses HELP in unit

"manson", he should be sent to unit "charcomp", then unit "interact". After

"interact" he should return to unit "manson", his base unit. Unit "interact"

is the last unit in both help sequences, so it will need an -end help-

;tatement as the last statement in the unit. Appropriate -help- commands

should be inserted in your lesson. It is helpful for the student to know

when the HELP key is active; therefore the message "HELP is available" is

displayed in units "wifehus" and "manson".

sitlz 1.'ariables ors "flags"

;tudent variables have been used extensively in the tags of display commands,

in calculations, and in tallying errors. In the psychology units, student

var i.rit le s will be used to determine the student's path through the lesson ma-

new defined variable named "psyflag" and the variable "pacerr" are

:Ised tor this purpose.

The variable "pacerr" is set: to 0 in unit "pacintro". After the scudent

:7;1-' 7,7,7(.7n.d. ldiHi tratr3;1..t tirrl coutflition:111v hrhnehed,

5.9

index newton

>

NEXT

NEXT

newdata

NEXT

3acintro

(pacerr = 0)

(psyflag = 0)

yes

no

wifehus

"pacerr"

manson

(psyflag = 1'

numcomp

li ______9
HELP ___I)

4
1

i

1

NEXT if

HELP ___j "psyflag'

NEXT if "psyflag" =

NEXT

V
charcomp

NEXT

V
interact
(pacerr = 0)

(-end help-)

NEXT if "pacerr" 3

After HELP is requested in either units "wifehus" or "manson", pressing BACK

or BACK1 will. end the help sequence. If still in effect, the help sequence

will end with unit "interact" because of the -end- command and the student

will return to his base unit. This branching is not included on the flow

d iagram.

Flow di 'ram f or Ex refse

5.10

based on the current value of "pacerr", either to the index or to a short review

starting with unit "charcomp". Pressing NEXT should take the student to unit

"index" if "pacerr" is 0, 1, or 2; but if "pacerr" is 3 or greater, pressing

NEXT should take the student to unit "charcomp". The conditional -next-

statement

next pacerr-3,index,charcomp

should be placed after the -answer- command, not at the beginning of the unit.

When the -next- command is encountered the "NEXT unit" is established based

on the condition of the "pacerr" expression. If this -next- command appeared

at the beginning of unit "manson", the "NEXT unit" would be established at

the time unit "manson" was entered, and the effect of any changes to "pacerr"

in this unit would not be noticed.

If the student makes 3 or more errors in the interaction questions he

will be forced to study the review units. The counter ("pacerr") should be

se, to 0 during the review. Therefore, when the student returns to the

question in unit "manson", the conditional -next- statement will branch him

according to the number of errors made this time in unit "manson". If "pacerr"

were not zeroed in the review units, the student could never exit from the

psychology topic.

Thu variable "psyflag" is set to 0 in unit "pacintro". The value remains

0 until unit "manson" at which time it is set to 1.. In unit "interact", the

fast review unit, "psyflag" is used to determine what unit will be the "NEXT

unit ". If the student entered the review units from "pacintro" then "psyflag"

will be 0 and unit "wifehus" will follow unit "interact". If he entered the

review units from "manson" then "psyflag" will be 1 and unit "manson" will

follow unit "interact". This branching can be done by a conditional -next-

command in unit "interact" using "psyflag" as the index expression. Use the

low diagram as a reference for the conditional branching with ',tudent variables.

The comment after a correct response in unit "manson" has been changed.

ititead of being shown the number of errors he made, the student is shown a

mf.a,!nt basc,1 on file value of "pacerr". The comments are shown in figure 5.7.

)1,111.ftte L, try ;Alf the items on the checklist, figure 5.8.

5.11

Value of "pacerr" Comment by PLATO

0 Very good analyses of these transactions!

1, 2 This completes the psychology topic,

3 and greater Let's review some of Harris' ideas and

then return to the transactions.

Figure 5.7 Comments after correct response in unit "manson"

your
checklist Items to be checked in student mode

Try the HELP key in units "wifehus" and "manson",

When unit "interact" is the last unit of a help sequence,

is the student returned to the base unit?

Does the "HELP is available" message appear in units

"wifehus" and "manson"?

In unit "manson" is the student appropriately branched

as a function of "pacerr"?

In unit "interact" is the student appropriately branched

as a function of "psyflag"?

---------------------....-------
Are the comments in unit "manson" displayed as in figure 5.7?

Figure 5.8 Checklist for Exercise E

6.1

6. ,ndging Process

,u1nr ;.rd Judo-ing command-Jzf._

if a -write- command is placed after -answer- or -wrong- commands it is

done only if the student's response matches'the tag of the -answer- or -wrong--

command. TUTOR commands are classified into two categories, regular commands

and judging commands. Of the commands in Chapters 1 to 5, the -specs-,

-answer-, -wrong-, and -no- are judging commands; the rest are regular commands.

At any particular time, PLATO is executing either regular commands or judging

commands, but not both. When executing regular commands, PLATO is said to be

in "r,:gular state"; when executing judging commands, it is in "judging state".

unit capital
at 810

write What is the capital of New York?

arrow 1108

answer Albany
write That's right.

%,cong New York <City>

write It's the largest city, but not the capital.

unit geog

PLATO nkgins tIUS unit and executes the regular commands -at- and -write-

2 and 3). It then encounters the -arrow- command, notes its location

in the unit, and plots an arrow on the panel. Still in regular state, it

; tor more regular commands between the. -arrow- command and the first

jud,,jng command. If any are found they are executed, but in this unit the

mciA, ud following the -arrow- command is -answer-, a judging command. PLATO

regular state and does not execute a judging command, so PLATO stops

and waits for the student to enter a response and press NEXT. When the student

preses NEXT, PLATO is switched into judging state. Now PLATO goes back to

w- co:mmind, the location of which was noted before, and looks for the

s_ 'omimuld after the -arrow-. The first judging command, -answer-,

PLATO executes this command by comparing the student response

the tag,. it the don't match, PLATO continues down the unit, still in

state. Tie following command is -write- (11 cc. 6). Since -write- is

ail t 11,,t rci in ju,IgLug following command,

6.2

-wrong-, is a judging command and it is executed. If no match is found,

PLATO looks at the following command, -write-, and skips it because it is a

regular command. The -unit- command (line 9) stops the search for any more

judging commands in this unit "capital". Since no match was found, PLATO

writes "no" after the student's response. When the student presses NEXT

again, his response and the "no" are erased.

Now PLATO is again waiting for the student to press NEXT to reinitiate

judging. When he enters a new response and presses NEXT, PLATO executes the

-answer- command again. If the student's response does not match the tag,

the -write- command on line 6 is skipped (because PLATO is again in judging

state) and the next judging command-wrong-, is executed. If the student's

response matches the tag of the -wrong- command, PLATO is switched back to

regular state. This time the -write- command on line 8, a regular command,

is executed. Matching of a -wrong- tag also causes "no" to be written after

the student's response. The following command is -unit-. However, PLATO'

will not leave unit "capital" until the arrow has been satisfied with an "ok"

judgment. When the student presses NEXT or ERASE after an incorrect response,

his response is erased and PLATO returns to the -arrow- and waits again.

When the student enters another response and presses NEXT again, the

whole process is repeated. Judging commands are executed and regu ar commands

are skipped. If the student's response matches the tag of the -an wer- command,

PLATO switches to regular state for any regular commands between t e matched

-answer- command and the next judging command. The -write- statem nt on line 6

is the only regular command found. It is executed and "ok" is written after

the student's response. The arrow has been satisfied so now pressing NEXT

will take the student to unit "geog".

The process just described can be summarized as follows. PLATO begins

a main unit in regular state. All regular commands are executed until an

-arrow- command is encountered. The place of the -arrow- command in the unit

is noted and PLATO continues to execute regular commands until a judging

command is encountered. Then PLATO waits for a student response. When the

student presses NEXT, PLATO switches to judging state. The first judging

command after the -arrow- is executed. If there is no match, subsequent judging

commands are executed, until a -unit- or -endarrow- command (described later

in this Chapter) is encountered. If none of the judging commands are matched

6.3

the response is judged "no" and PLATO returns to the arrow. If an answer-type

or wrong-type command is matched PLATO is switched to regular state. Regular

commands after the matched command and'before the next judging command or

-unit- or -endarrow- command are executed. An appropriate judgment is given,

"ok" or "no", and pressing NEXT takes the student to the next unit (if "ok")

or back to the arrow (if "no"). The flow diagram, figure 6.1, summarizes

the operation of a TUTOR unit.

Judging Numerical Responses

Besides the -answer- and -wrong- commands, TUTOR has commands for judging,

numerical responses, -ansv- and -wrongv-. Here is an example of their use.

unit math
at 810

write 4 x 8 =

arrow 817

ansv 32

. write Correct.

wrongv 12

write Mulitply; don't add.

If the student types 12, he will see the comment "Multiply; don't add."

If he types 32, he will see the comment "Correct".

A tolerance of an absolute or a percent deviation can be specified with

the -ansv- and -wrongv- commands.

1 unit math
2 at '810

3 write 4 x 8 =

4 arrow 817

5 ansv 32

6 write Correct.

7 wrongv 32,2

8 write You're off a little.

9 wrongv 12

10, write Multiply; don't add.

The second argument in the -wrongv- tag on line 7 is the tolerance allowed.

k If the student types 30, 31, 33, or 34 he will see the comment "You're off

a little." The response "32" will math the -ansv- statement (line 5) and

not the -wrongv- statement (line 7), since the -ansv-. precedes the -wrongv-.

8 3

6.4

Operation of a TUTOR Unit -- interaction of regular and judging commands

start at the "-unit-
command and execute
all regular commands
until a -.Unit- command
or judging command
(following an -arrow-)
is encountered'

start at the -arrow-
command (skipping ALL
regular commands) and
execute only judging
commands until the
student's response
matches the tag of some
judging command

)

was a -unit- or
a judging command
(following an -arrow-)
encountered?

-unit-
command

judging
command

there is a student
response expected as
signified by the -arrow-
command, wait for thaI
response

student enters a
response and presses
NEXT

unit is complete,
wait for student
to press a key
and branch accord-
ingly to a new
unit

this -arrow- is
satisfied, presS
NEXT to continue
to another unit
or question

wait for the
student to press
NEXT, another re-
sponse will be
entered

1\no

was a match found judge "no", wait for was the
for the student's
response?

no the P' lent to press
NEXT, another response

judgment "ok"?

will be entered

yes

judge "ok" if an -answer-, -ansv-
-match-, -ok-, -exact-, -exactc-,
-concept- command was matched,
judge no if a -no-, -wrong-, or
-wrongv- command was matched

execute all regular commands
following the judging command
which matched the student's
response until anoth r judging
command is encountere , or until
an arrow -, -endarrow=, or -unit-
command is encountered

Figure 6.1 Flow diagram of a TUTOR unit

6.5

Here is an example of- -ansv- and -wrongv- with a percent deviation

tolerance of 10%. Any percent deviation may be specified.

unit distance
at 810

write What is the circumference of the earth at the

equator, in miles?

arrow 1210
ansv 25000,10%
write That's quite a distance!

wrongv 8000,10%
write That's the diameter.

no

write Try again:

Any response from 22500 to 27500 will be judged "ok". A response from

7200 to 8800 will match the tag of the -wrongv- and the student will see

"That's the diameter." Any other response will be judged "no", and the

comment "Try again." will appear.

It is important to know that PLATO evaluates the student's response as

an expression, and compares the result with the tag of the -ansv-. In unit

"distance" if the student types an expression equal to 25000, it will be

judged "ok". If the student used scientific notation, and typed "2.5 X 1W

,

or "25 x 103" he would be judged "ok". In other words, PLATO evaluates the

student's arithmetic expression and then compares it to the tag of the -ansv-

or -wrongv- command.

However, sometimes you may not want to allow thio. In the example unit

"math", the student is asked to perform the calculation, and we would not

want to allow the response "4 x 8" to the question "4 x 8 = ". You can use

specs noops

to specify that the student's response may not contain math operators. The

systems reserved word "opent" contains-the number of operators in the student's

response. Below unit "math" is modified to use this -specs- option and systems

reserved word-

6.6

unit math
at 810
write 4 x 8
arrow 817
specs noops
ansv 32
write Correct.
no

writec opcnt,,,Do not use an operator in your answer.
Give a constant.

If the student uses any operators in his response, -specs noops- will

cause a "no" judgment and "opcnt" will be 1 or greater. The comment "Do

not use . . ." will be written.

Storing Numerical Responses

You may want to store a numerical response in a student variable, The

stored value can then be used for branching or other purposes. Unit "choice"

below uses the stored student response to branch to the unit the student

wants to study. The -store- command (a judging command) stores a number or

the value of an expression typed by the student in the.. variable named in the

tag. Unlike -answer- and -wrong-, -store- does not cause a switch to regular .

state after a number has been stored; judging state:Continues. There is a

switch to regular state wLth a "no" judgment only if the student's response

is not "storeable"; that is if it is an illegal arithmetic expression or is

something other than a number or an arithmetic expression.

1 unit choice
2 at 503
3 write Press the number of the topic you want to study.
4 at 810
5 write 1. The Archeology of Troy
6 2. The Trojan War
7 3. Odysseus' Return from Troy
8 arrow 1205
9 store part
10 no
11 **the command above judges all responses "no"
12 jump(part,x,x,arch,troywar,oreturn,x
13 at 1505
14 write You must choose 1, 2, or 3. Press NEXT and enter
15 another number.

6.7

The number the student types is stored in the variable "part". If the student

enters 1, 2, or 3, he does not see the "no" since he is immediately branched

by the -jump- command, line 12. If a number other than 1, 2, or 3 is entered

the x's in the tag of the -jump- will cause PLATO to "fall through" to the

following`- write- command. Use of the -no- command and the conditional -jump-

allows the desired branching, but prevents the erasure and rewriting of the

panel after an inappropriate response.

Multiple Arrows in a Unit

Suppose you want to ask the student two related questions, such as

"Who was the third president of the U.S.?" and "Who was vice-president under

him ?" If these 'questions are in two different units, the first one will be

erased when the student enters the second unit. It would be nice to have the

two questions appear on the same page, as is-done in unit "pres".

I

1 unit pres

2 at 805

3 write Who was the third president of the U.S.?

4
5 answer <T;Thomas> Jefferson

6 write You're right.

7 wrong <J,John> Adams

8 write He was the second president.

9 endarrow
10 at 1605

11 write Who was vice-president under hiM?

12 arrow 1803

13 answer <A,Aaron>._Burr

14 write Right again!

15 wrong <B,Ben,Benjamin> Frankiim

16 write Hi was an ambassador, but never vice-president.

17

18 unit senators

The -endarrow- command on line 9 delimits the portion of the unit

pertinent to the first -arrow-. The initial question is written at 805.

PLATO encounters an -arrow- command and notes its location in the unit. It

then continues to execute any regular commands that occur before the first

judging command. There are none, so PLATO returns to the - arrow and waits

for the student'to type a response and press NEXT.
When he does, PLATO begins

the search for judging commands. If there is no match to the -answer- tag

(line 5) or the -wrong- tag, I'LATO keeps looking for another judging command.

87

6.8

But. encountering the -endariow- means, in effect, "Stop looking for any more

judging commands." So the response is judged "no" and PLATO returns to the

arrow to wait for another student response. In judging state, the -endarrow-

command has acted like a new -unit- command, stopping the search for more

judging commands.

When the first arrow has been satisfied the -endarrow- command will

cause the arrow plotted on the screen at 1003 to be erased, but the question,

the student's response, and comment "You're right" will remain on the _panel.

PLATO then proceeds to process the rest of the unit.

Exercise F General Comments

The sequencing of the psychology units is the same as in exercise,E,

and one unit has been added to the physics topic. The psychology units

are therefore .omitted from the flow diagram, figure 6.2.

index
>

1 newton NEXT

BACK

newdata NEXT

new
physics
unit >

Figure 6.2 Partial flow diagram for Exercise F

The Index

The choices from the index are now designated by, numbers instead of

letters. Numbers are used so that a conditional -jump- command can be executed

based on the student's answer as stored by a -store- command. The judging for

unit "index" is similar to that of unit "choice", p. 6.6.

6.9

Physics Units

The new physics unit has the student select a velocity for Newton to

use when throwing the apple'back atthe tree. For this unit, directions to

the student are needed, the familiar apple tree has to be displayed, and

Newton needs an apple sitting on the ground. Your display for this unit

should resemble figure 6.3.

The student responses can be grouped into four categories: a velocity

large enough so that the apple hits the tree; a velocity which is not large

enough; a velocity outside certain limits (the limits are the approximate

range of a person's pitching capability); a velocity which is not a number

or a legal expression. If the student enters a response which is not "storeable"

by a -store- command, PLATO automatically judges "no" and there is a switch

to regular state. A -write- command can be placed below the -store- command

to give an appropriate comment if the student's response is not a legal ex-

pression or a number. If the velocity specified by the student is outside

the limits, a -no- command followed by a -write- command can direct the student

to velocities within the specified limits.

Newton was so angry when the apple hit him, he

picked it up and threw it at the tree! Choose,d

velocity so when the apple is thrown it will hit

the tree -(use a number between 30 and 150).

C

igure 6.3 Display for new physics unit

6.10

If the velocity entered is within the specified limits, whether large

enough to actually hit the tree or not, the following should be done:

erase the apple on the ground
display the apple in the air
write a comment (see figure 6.4)
erase the apple in the air
display the apple on the ground

If the tossed apple did not hit the tree, the student can press NEXT to

erase the comment, and then enter a new value. If the apple did hit the

tree, the student has the option of either pressing NEXT so another toss

can be made, or branching to the index by pressing BACK.

After a "no" judgment PLATO automatically erases the last comment

displayed when the student presses NEXT to enter another response. This

feature is used in the sample les on by using a -wrongv 90,60- statement

for judging all entered velocities between 30 and 150. However it is not

appropriate for the student to see the "no" for each response within these

limits, so a -specS nookno- statement is used.

Did the apple
hit the tree? Comment

yes

no

WOW! You hit the tree for Newton.

Press NEXT to try another toss, or

BACK to return to the index.

A larger velocity is needed

to hit the tree.

Figure 6.4 Comments displayed if velocity is within specified limits

6.11

Since all responses in this unit are judged "no", an exit is needed.

A conditional -back- statement is used for this purpose. Pressing the BACK

key only branches the student to another unit; no help sequence is initiated.

The conditional expression for the -back- and the -writec- statements (used

for the comments in figure 6.4) can be determined by considering the distance

between the apple and the tree's branches, and the total distance the apple

will reach for a given initial velocity specified by the student. The re-

lationship between total distance and initial velocity is:

total distance =
initial velocity

2

64

For example, if the distance between the apple and the branches is 256 dots

(4 x 64 dots), an initial velocity of 128 (2 x 64) is required for the apple

to hit the tree. To compare the student's initial velocity with the distance

of 256 dots in this example, a statement

back 256-(initvel
2
-64),x,index

will activate the BACK key if the defined variable "initvel" is large enough

to have the apple hit the-tree.

Pychology Units

In units "wifehus" and "manson ", a second question is added. An

-endarrow- command is used to delimit the judging commands for the first

-arrow- and the presentation and judging for the second -arrow-. After the

second -arrow- another -endarrow- is used so there can be a break between the

judging for the second -arrow- and the summary comments and drawing presented

after the second -arrow-. A -pause- command is used after each -endarrow-

so the student can continue at his own rate after an "ok" judgment.

The general format for units "wifehus" and "manson" is:

display interaction and initial question

response judging for initial question

-endarrow-

-pause-

display second question

a

6.12

response judging for second question

-endarrow-

-pause-

erase help message, questions, and responses

display initial comment

draw interaction pointer

-pause-

display second comment

proceed to appropriate unit when NEXT is pressed

Summaries for the response judging and the comments after the second question

is "ok" are presented in figures 6.5 and 6.6. As with the initial questions

for these units, the defined variable "pacerr" should be incremented after

each incorrect response. The conditional -next- statement should nr follow

the last -endarrow- in unit "manson". This position of -next- is important

because the student errors in this unit are considered when PLATO "decides"

if review is needed by using the current value of "pacerr". A checklist

for this exercise is provided in figure 6.7.

6.13

unit question response judgment comment

wifehus 1

1

parent

adult

child

all other

responses

child

2 adult

parent

2 all other

responses

adult

1 child

parent

all other

responses

child

parent,

adult

all other

responses

ok none

no The wife's response (sarcastic tone) con-

tains more than information about the tie.

no If it were the child, it would be more

self-centered.

no Please enter one of the components;

Parent, Adult, or Child.

ok none

no Not with the sarcasm. She is trying

to do more than give information.

no She is not appealing to a moralistic or

judgmental aspect of him.

no Please enter one of the components;

Parent, Adult, or Child.

ok none

no There was no emotional reeling in

the father's response.

no A Parent's response probably would have

scolded the on for being afraid or not

trying hard enough.

no Please enter one of the components;

Parent, Adult, or Child

ok none

no No appeal was made to morals or right

or wrong.

no The father's statement would include a

stronger attempt to reassure his son.

no Please enter one of the components:

Parent, Adult, or Child

Fiure 6.5 Response judging for units "wifehus" and "manson"

a '1

6.14

unit comment

wifehus Here is the wife's part of this interaction.
-pause-

Harris calls this type of interaction a

crossed interaction. It leads to difficulties

because the individual is responding with a

different component than was addressed. Tempers

soon flare because of the failure to communicate.

manson This example shows what Harris calls a complementary

transaction. This type of transaction can continue

indefinitely because the two components.are

communicating.
-pause-

(the -writec- statement based on "pacerr";'

refer to figure 5.7)

Figure 6.6 Comments after second question in units "wifehus" and "manson"

your
checklist Items to be checked in student mode

Coiof units to the flow diagram, figure 6.2.

Does the new d:in: for unit "index" branch the student correctly?

rues the display for the new physics unit resemble figure 6.3?-...-
Are the comments for the new physics unit displayed according
to fi:ure 6.4?

Is the student allowed to exit from the new physics unit with
the BACK key only after the apple toss hits the tree branches?

Are the response judging specifications for the new psychology
questions in accordance with figure 6.5?

_Eas...alL______________________
Are the summary comments in figure 6.6 displayed with
appropriate

Is "pacerr" incremented after each "no" judgment for the new
psychology questiOns?

Does the conditional -next- in unit "manson" follow the last
-endarrow-?

Figure 6.7 Checklist for Exercise F

7.1

7. Random Numbers

Sampling with Replacement

PLATO can generate random numbers. The statement

randu v10,9

generates an integer from 1 to 9 (the number given in the second argument

of the tag) and stores it in v10 (the .location named in the first argument

of the tag). The generation of random numbers by the -randu- Command is

"sampling with replacement". That is, each number within the specified.

range has the same chance of being sele ted as any other number in the

specified range.

The unit "multiply", figure 7.1, generates two numbers and calculates

their product. The student is shown the numbers and asked to multiply them.

His response is compared to PLATO's result and judged accordingly. After

doing five items correctly on the first try he is jumped to unit "done".

In unit "satup" the variable "right" is set to 0. This variable will

serve as a counter: 1 will be added to its value every time the student

answers correctly on the first attempt. it must have the value 0 when the

student starts the drill so that it will contain the number of questions

correct on the first attempt. The -next- command in unit "multiply", line 7,

specifies that after this unit, unit "multiply" is to be done again. The

student will cycle through this unit until 1e has answered 5 items correctly

on the first attempt. The -jump- command on. line 8 is encountered each time

unit "multiply" is begun. It is a condition .l command, so PIATO looks at the

value in "right". The first time it contains 0, and since an x appears in

the "0" position of the tag, there is a "fall through" to the following com-

mand, the -randu- on line 9. A number from 1 to 7 is generated and stored in

"first". Then (line 10) another number from 1 to 8 is generated and storrd in

"second".

The problem is displayed using embedded -Show- commands (lines'll and 12)

and the arrow is plotted. When the student enters his response and presses

NEXT, it is compared (line 14) with the tag of the -ansv- statement. If they

match and if "ntries" equals 1, unit "counter"Js executed (line 15). The

value in "right" is incremented by 1, making the value now equal to 1. If

7.2

"ntries" is not equal to 1, "right" is not incremented. When the student

presses NEXT he starts through unit "multiply" again. When the -jump- command

on line 8 is encountered, the value of "right" is checked. If it is less than

5 there is a "fail through". Two new numbers are generated and stored in "first"

and "second" (liaes 9 and 10). These numbers might be the same as the ones

previously chosen. When the student enters a new response it.is again compared

with the tag of the -ansv-. If they match and if "ntries" equals 1, PLATO adds

1 to the value in "right". If they do not match or if "ntries" is greater than

1, the old value remains in "right". The student keeps going through this unit

until the value in "right" equals 5. When "right" contains the value 5, en-

countering the -jump- command on line 8 causes an immediate branch to unit "done".

The -randu- command may also have a one-argument tag. The statement

randu v10

causes a fraction between 0.0 and 1.0 to be randomly generated and stored in v10.

1

2

unit setup

**"first", "second", and "right" have been defined
3 zero right

jump multiply
5 *

6 unit multiply
7 next multiply
8 jump right-5,x,done $$falls through if "right" is less than 5
9 randu first,7

10 randu second,8
11 at 410
12 write cfs,first> <Cs,secondl> =
13 arrow where+3
14 ansv firstxsecond
15 do ntries,x,x,counter,x
16 wrongv first ::second

17 write You are dividing.
18

19 unit done
20 at 615
21 write You have finished the exercise.
22

23 unit counter
24 cal(' right-right+1

Figure 7.1 Random number units

0

7.3

Sampling without Replacement

The -randu- command gives sampling with replacement; that is, the same

number may be generated more than once. It is sometimes desirable to sample

without replacement; 1.e., to generate numbers randomly, but not to pick the

same number twice. The -setperm- and -randp- commands can do this. The

statement

setperm 6

sets up the list from which the numbers will be/taken.. The mber in the tag

is the largestlnumber in the list. In other words, the above st ement sets

up a number field from 1 to 6. The statement

randp v16

picks a number from the field set up by a previous -setperm- command, places

'that number in v16, and deletes that number from the setperm list.

-
The -setperm- and --randp- commands can be used to design a drill that

presents items in random order. The units in figure 7.2 are a foreign language

vocabulary drill. A new command is introduced in this drill, -join-. The

-join- command works like the -do- command; except that it is executed in

judging state as well as in regular state. It will be used to attach units

containing -answer- commands to the main unit.

In unit "set" a field of 5 numbets is established (line 3) from which to

pick at random. The tag of the -setpetm- command here is a constant; it may

be a variable. Then the student is j5illped to unit "lang". The statement

next lang

sets up the same kind of looping struct re that was used earlier in the

discussion of the -randu- command. The -randp- command (line 8) picks a

number from 1 to 5, places it in "prob",_and_deletes it -from-the setperm list.,

After all. numbers have been picked once, the -randp- command Will place 0 in

"prob". The-jump- command on line 9 serves to branch the student out of

unit "lang" when the field has been exhausted; that is when the drill is .com-

plete. If "prob" contains a number greater than 0, the,student will continue

in unit "lang".

97

7.4

1 unit set
2 **variable "prob" has been defined in i.e.u.
3 setperm 5 $$ set up list: 1, 2, 3, 4, 5
4 jump lang
5. **

6 unit lang
7 next lang
8 randp prob $$ pick a number from setperm list; delete it from list
9 jump prob,x,done,x $$ when O'returned, drill is done

10 at 810
11 write Translate into French:
12 at 1015
13 writec prob,,,a horse,a house,a book,a hat,a street
14 arrow 1213
15 join prob,x,x,al,a2,a3,a4,a5
16

17 unit al

18 answer un cheval
19 unit a2
20 answer une maison
21 unit a3
22 answer un liyre
23 unit a4
24 answer un chapeau
25 unit a5
26 answer une rue
27

28 unit done $$ done with drill
29 * more TUTOR code

Figure 7.2 Random drill; no review of "missed" items

InStructions are:Written on the panel (lines 1-0 and 11). The -writec-

command on line 13Writes one of the items on the panel depending on the

Value in "prob". 'When the student signals PLATO to begin judging, the -join-

command attaches the appropriate -answer- statement. The attached unit depends

again on the value in "prob", and since the value in "prob" has not changed,

the unit joined will be the one appropriate to the word displayed by the

-writee- command on line 13.

Automatic Review of Items "missed" in a Drill

Frequently in a drill of this type you may want to present again to

the student the items he missed. The language drill can be alteredto give

review of the items missed by including two new commands, -modperm- and -remove-,

and the systems reserved word "ntries". The actions of -modperm- and -remove-

9

2 3 1 4 1 5 1

7.5

can best be explained by more discussion of -setperm-. When you write the

statement

setperm 5

PLATO sets up two fields like this:

setperm list

modperm list 1111111111111111

Then when 4' -randp- command is encountered, one of those numbers is chosen,

and taken out of the setperm list but not out of the modperm list. So if 3

is picked, the fields look like this:

setperm list

modperm list

ronwrin

The randomly chosen number is always removed from the, setperm list by the

-randp- command. You can selectively remove numbers from the modperm list

with the -remove- command. The form of the command is

remove v16

where the tag is the variable in which the random number is stored by the

-randp: command. When a -modperm- command is executed the contents of the

modperm list are placed in the setperm list.

You can remove from the modperm list the numbers of all the items in a

drill for which the student met a certain criterion, such as answering correctly

on the first or the second attempt. Then, after the student has seen all prob-

lems once, you can use the -modperm- command to present again to the student

all the items he missed. Figure 7.3 presents the French translation drill,

modified to present the items in random order and then present again the Ones

which the student did not answer correctly on the first try.

The instructions and the problem are displayed and the student's response

is compared to the tag of the appropriate -answer- command. When judging is

ended, line 17 is \executed. If "ntries" equals 1 and the student's response

matches the tag of the -answer- command, unit "removal" is attached (lines 19

99

7.6

1 unit set
2 **variable "prob" has been defined in i.e.u.
3 setpert 5 $$ establish modperm and setperm lists
4 jump lang
5 **

6 unit lang
7 next lang
8 randp prob
9 do prob,x,review,x $$ attach "review" if. setperm list is etpty

10 jump prob,x,done,x
11 at 810
12 write Translate into French
13 at 1015
14 writec prob,a horse,a house,a book,a hat,a street
15 arrow 1213
16 join prob,x,x,al,a2,a3,a4,a5
17 do ntries,x,x,removal,x, $$ remove from modperm list if ntries = 1
18 *

19 unit removal
20 remove prob $$ delete number'#om modperm list
21 *

22 unit review
23 modperm $$ place modperm list into setperm list
24 randp prob
25 *

,26 unit al
27 answer un cheval
28 unit a2
29 answer une maison
30" unit a3
31 answer un livre
32 unit a4
33 answer un chapeau
34 unit a5
35 answer une rue
36 *

37 unit done
38 * more TUTOR code

Figure 7.3 Random drill with review of "missed" items

1O0

7.7

and 20). That is, the number associated with this item is removed from the

modperm list.

If "prbb" is equal to 0 (line 8), unit "review" is attached, line 9, and

the modperm list is placed in the setperm list by the -modperm- command, line

23. A number is chosen from the new setperm list with the - randy -, line 24.

If that number is 0, meaning that all the numbers from the new setperm list

have been picked, the student proceeds to unit "done" (line 10), because he

has completed all the items correctly on ,the first attempt. If "prob" does

not equal '0, he continues in unit "lang" as before. This structure will be

repeated until all numbers have been removed from the modperm list; that is,

until the student has done all the items right on tne first try.

A setperm list may not be larger than 120 items. However TUTOR has

commands which make it possible to work. with more than 120 items or to

sample from more than one list at a time. These commands are described in

lesson "aids" (see Chapter 13).

8.1

8. Additional Judging Capabilities

The -specs- Command as a Marker

It is often convenient to have the -specs- command immediately following

the -arrowCommand. HoWever, the -specs- command can b placed anywhere

after, the -arrow- command and there can be more than one k- specs- command for

each arrow.

1 arrow 1422

2 specs okextra
3 answer Homo Sapiens

' 4 write very good
5 specs okextra,bumpshift
6 answer (woman,man,human)

7 no
8 write woman and man

\`,

-- A

1

1

For the first anticipated -answer-, capitalization is important\,' therefore

only the "okextra" tag (line 2) is included. If the student's cesponse does

not match the -answer- statement in line 3', PLATO will continue
,

to search

16-r judging commands. The -specs- command on line 5 is the next, judging
,,

command. This second -specs- command Clears the old "specifications" set

by the first -specs- command, and establishes new "specificationl" for the
4

judging commands following line 5 in the above example.

The -specs- command also acts as a marker which is returnedto after

PLATO has made a judgment. All regular commands following the 14st -specs-

command encountered for the current -arrow- are executed after eich judgment

for that -arrow-. This processing of regular commands stops when a judging

command is encountered.

1 arrow 1520

2 at 1006

3 write Who was the first President?

4 specs okspell,okextra,

5 at 2206

6 write Hishote.was Mt. Vernon, Virginia.

7 answer Washington
8 write He was quite a-soldier.
9 wrong Jefferson

10 calc errorsi- errors +1

132

8.2

After the arrow is displayed on line 15, space 20, the question "Who

was the first. President?" is diSplayed, then PLATO encounters a judging

command (-specs-) and waits for the student to enter'a r*fsponse. After a

response is entered and NEXT is pressed, PLATO returns to the -arrow- and

,searches for judging commands. The -specs-, -answer-, and -wrong- commands

are the Only judging commands, so they are processed in that order until a

match for the response is found. After a judgment by PLATO, the regular

commands following the -specs- command (lines 5 and 6) are executed until a

judging command is encountered, line 7. The possible student responses,

judgments, comments, and calculations after a judgment are summarized in

figure 8.1.

Response Judgment Comments and Calculations

Washington ok He was quite a soldier.

His home was Mt. Vernon, Virginia.

__JeffP-rflon no calc errors÷errors+1

His home was Mt. Vernon, Virginia.

all other responses no His home was Mt. Vernon, Virginia.

Figure 8.1 Summary of writing after- -specs-

A -specs- command.with a blank tag can function as a marker to be

returned to after a judgment for that -arrow- has 'been made. Such an ex-

ample is presented' later in this chapter, figure 8.5. A '--Specs- command

with a blank tag also clears previous "specifications" established by

-specs- commands since the current -arrow- was encountered.

The -match- Command

A response judging command which is more specialized than the -answer-

command is the -match- command. The -match- command looks for words in the

student's response that are in the tag of the match - command; and automati-

cally sets a variable based on which argument of the -match- tag contained

133

A

8.3

one of the words in the student's re donse. If a word in the student's

response is in the tag of the -match- command, PLATO judges the response

as "ok"; otherwise a -"no" judgment is given.

match v3,horse,(pig,swine),cow

If the student entered the response "horse:the student variable v3 would

be set to 0 and the response would be judged "ok". With a response of either

"pig" or "swine" (synonyms are in parentheses separated by commas), v3 would

be set to 1 and an "ok" judgment would be made. If the student entered the

word "cow", the response is,judged "ok" and v3 would equal 2. If some other'

response was entered, for example "sheep ", that response would be judged "no"

because the word "sheep" does not appear in the tag of .the -match- command,

and the variable v3 would be set to -1.

If the student's response is found in the tag of the -match- command,

the variable is set to the value corresponding to the relative location of

the "matched" word and an "ok" judgment is made. The relative Jocations. of

the --t-he--match---command- are cumbered start-in-g- with zero and proceeding -----

through the positive integers. If no match made, a value of -1 is always

placed in the variable (first argument) named in the tag of the -match-

command and a "no" judgment follows. The -match-. command alwayS terminates

judging state because it either finds a student response (and judges "ok")

or no response is found (and it judges "no") and some value is always stored

in the variable named in the tag of -match-. The automatic checks and

mark-up for word order, spelling, and extra words which are done with -answer-

are not part of the -match- command.

The value of the variable which is set as a result of executing a -match-

command can be used for branching the student. If an index is displayed, as

in figure 8.2, and the student chooses either topic a, b; or c, he should

be branched to the appropriate units. If another choice is made, such asf,

a "no" judgment should follow with the comment: "Please choose either a, b,

or c." The response judging for the index of figure 8.2 is shown below.

match choose,(a,A),(b,B),(c,C)
jump choose,x,cemnom,molwt,balequat
write Please choose either a, b, or c.

IL10

8.4

If no response is founds then "choose" is set to -1, a. "no" judgment is

made, the "x" or fall through argument of the .-jumpL. is done, and the -write-

`statement is displayed. If a response is found, "choose" is set to either

0, 1, or 2 (depending on the response) and the -jump- command takes the student

to a new unit. If a response is found, the -write- command is never executed.

This process is summarized in figure 8.3. If a -specs bumpshift statement

was inserted before the -match- command, then the 'synonyms (a,A), etc, would

not be needed.

Please choose one of the topics with the corresponding letter

`a. Chemical Nomenclature

b., Molecular Weight Determination

c. Balancing Equations

Figure 8.2 Typical index of topics

student response judgment value of "choose" jump to unit

a or A ok 0 cemnom

b or B ok 1 mOlwt

c or C ok 2 balequat

anything else no -1 "fall through"

to -write-

Figure 8.3 Judgment by -match- and value of "choose"

8.5

In unit "verbs", figure 8.4, the student enters a subject pronoun.

Which pronoun he entered is determine with a -match- command, and the cor-

responding verb form is displayed.to he rightof the.pronoun. A new systems

reserved. word "jcount", is introduce.. It contains the number of Character's

in the studen 's response.' It is use here to position-the verb.

The stud nt will cycle through t e unit as many times as he wants. When

he enters a response the, capitals are removed because of the "bumpshift" tag

Of -specs-. The automatic writing of,"ok" or "no" is prevented by the "nookno"

tag of the.-spets- command. His respOnse is searched for any of the strings

listed in; the tag of the -match- command. If the string "i" is found, the

variable "pronoun" is set to 0; if "he", "she" or "it" is found, "pronoun"

is set to 1, if "you", "we" or "they" is found, "pronoun" is set.to 2. If.

the respOnse matches none of the listed strings, "pronoun" is set to -1. The

position of the writing is determined (it will be at 1615, plus the length of

the word the student entered, ilus 3). Then the appropriate verb is written;

or if"pronoun" equals -1, the student is told that his response is not a

eubIect'pronoun.

unit verbS
next verbs
lab gerunds
inhibit erase
.at 1615

erase 40

at 1010
write Enter a subject pronoun and PLATO will conjugate the

verb "to be" with it. Press LAB when you are ready

tb go on.

arrow 1,615

specs bumpshift,nookno

match Pronoun,i,(he,she,it)(you,we,they)
A The variable "pronoun" must be previously defined.

at 1615+itount+3
writec, pionoun,This is not a subject pronoun.,am,is,are

Figure 8.4 Using -match- and "jcount"

1 Jrj

8.6

The "judOng copy" of a Response

When the student, enters a response at an arrow, a copy of the response,

called the "j,udiingcopy", is made. It is the judging copy that TUTOR Com-

pares-to the tags of -answer-, -ansv-, -wrong-,,etc. commands. For example,

when a -specs bumpshift- is encountered, the capitals are removed from the

judging copy of the response, but the capitals remain on-the student's dis-

play panel. When the student's response matches an entry in the tag of a

-match- command, that entry is removed from the judging copy of the response

and replaced with blanks.

RI unit "convert", figure 8.5, the student is asked to convert inches

to-centimeters. A new command is introduced in this unit, the -judge-
.

command. It is. a regular

\

command and can be usedto modify NATO's automatic

judgment. There are several possible tags.for the -judge- command .and it can

be used in a conditional form, as In-line 8. Some of the tags of the -judge-

command are summarized in figure 8,6.

1 unit convert
2 * "inches", Itinits",,dild "number" are defined in i.e.u.
3 calc inchest.10 .$$ for a drill; this May be a -randu-
4 at 610
5 write convert 41(s,inches> inches to centimeters.
6 arrow 1015
7 speCa
8 judge units,no,x,no
9 writec units please enter your units::

10 you are converting; from inches to cm
11 at 1610
12 writec (units+1).xjudgedtvery
13 2.54 x(a , inches> <Cs , number=
14

15 match units,(cm,centimeter,centimeters),(in,inches,
16 inch)
17 judge continue
18 store number
19 ansv 2.54xinches.

4

Figure 8.5 Example of -match- and -judge-

I. J7

8.7

tag brief summary

continue switch to processing judging commands

ok judge theresponse "ok"

no judge the response "no"(unanticiPated)

wrong judge the response "nc" (anticipated)

x do not alter. PLATO. judgment

Figure 8.6 Some tags for -judge-

A new systeMs reserved word, "judged", is also introduced in unit "convert".

It can have the following values:

-1 after an "ok" judgment

0 after an anticipated "no" judgment

1, after an unanticipated "no" judgment

An anticipated "no" judgment means a responsethat was judged "no" as a result

of matching a - wrong -, - wrongv -, or encountering a -judge wrong- statement.

An unanticipated "no" judgment is a result of matching the -no- command, not

matching any judging.commands, or encountering a
-judge no- statement.

In unit "convert" the -match- command identifies and removes tho units.

either cm. or in., from the judging copy of the student's response. After /

the -match- command, line 15 in figure 8.5, the numerical part of the student's

response must still be evaluated. However after a -match- command, PLATO has_

made a judgment (either "ok" or "no") and is now processing regular commands.

Before the numerical part of the response can be evaluated with the -ansv-

command, PLATO must be instructed to cease processing regular commands and to

start processing judging commands again. The -judge continue- statement,

line 17, does just that. Thus starting with line 18, PLATO is again processing

judging commands, using the judging copy of the student's response altered by.

the -match- command. The -store- command places the numerical expression in

"number", and the -ansv- command evaluates the numerical part of the student's

response.

1J8

C

8.8

After the -ansv- command, PLATO has again made a judgment (either "ok"

or "no") because the -ansv- is the last judging command for the current

-arrow-. The -specs- command on line 7 of figure 8.5 is used only as a

marker to be returned to after PLATO has processed all judging commands for

the current .--arrow-. Upon returning to the -specs- command, PLATO is pro-

ressing regular commands so lines 8 through 13 are executed after each

judgment for this -arrow-. When a judging command is again encountered,

line. 1.5, PLATO ceases the execution of regular commands.

The -judge- command on line 8 of figure 8.5 will judge any student

response "no" if che'Units are not stated as cm. If the numerical part of

the student's response was correct (as evaluated by the - ansv -) but the units

were wrong, the conditional -judge- command would set the PLATO judgment to

"no". 'Thin,, the -judge- command can be used to alter a previous judgment

of PLATO.

Some typical student responses are analyzed in figure 8.7. Unit "convert"

contains several new (and complex) ideas. The logic of this example is intended'

to be only a sample of TUTOR code. Some major programming concepts of this

unit are summarized in figure 8.8.

student value' of judgment, value of comment,
response "units",line 15 lines 19&8 ,"judged",line 12 line 9-13

1. 25.4 cm 0 ok -1 'very good
2. 25.4 -1 no 1 please enter...
3. 20 cm 0 no 1

:
2.54 x 10#...

4. 2.54 in 1 no 1 you are...

classification of Student response

1. correct number and unit entered

2. no unit entered with any number

3. incorrect number entered wiEh'correct unit

.4. incorrect unit entered with any number

Figure 8.7 Typical responses for u

13)

it "convert-"-----__

8.9

1. -specs- used as only a marker

2. conditional -judge- command

3. use of reserved word "judged"

4. return to judging state with -judge continue -

5. altering a previous judgment of PLATO

Figure 8.8 New concepts in unit !'convert"

Removing Numbers from the Judging' Copy

The -storen- command removes arithmetic expressions, one at a time, from

a student's response and places the-expression in the variable named in the

tag of the -storen- command. The removed expression is replaced with blanks

in the judging copy of the response. ' If a student was asked "How tall are

you?", the numbers could be acquired by:

arrow 1510
2 storen feet
3 write Please state your height as a number.
4 storen inches
5 write Please enter both the feet and inches.
6 specs okextra
7 answer (ft,feet) (in,inches)
8 write thank you
9 no

10 write Use the form: 5 feet 8 inches.

The first.-storen-, line 2, places the feet value in the defined

variable "feet" and removes that number from the judging cop. The second

storen- removes the inches value after placing it in "inches". Then the

remaining words can be interpreted by the -answer- statement. Like the

-store= command, the -storen- command terminates judging with a "no" jddg-

ment if no number or legal expression is found in the student's response.

The -write- statements on lines 3 'and 5 will be displayed if no number or

only one number is entered, respectively. The student must enter another

height specifying both feet and inches.

8.10

The -exact- Command

Occasionally you may want to require the student to type his answer in

one specific way. In a lesson on expressing ratios using the a:b format,

you would want the student's answer to, be in exactly that fOrm. The -exact-

command is used for this (-exact- is a judging command).

unit
at 1

write E

arrow 16

exact 3:5

write Good.

the ratio 3/5 using a colon.

In order to match the tag of an -exact- command, the student's response must

be the same, character for character, as the tag, including spaces and punc-

tuation marks. With -exact- there is no mark-up of an incorrect response as

there is with -answer-.

There is a conditional form of the -exact- command, -exactc-.

define problem=v42
unit setup
setperm 4
jump ratios
J.

unit ratios
next ratios
randp problem
jump problem,x,alldone,x
at 1402

write Express this ratio using a colon.

at where+2
writec problem5/5:1/234/528/7::
arrow 1601

exactc problem,,,3:5,1:2,4:5,8:7,,

A number is chosen by the -randp- and stored in the variable "problem". The

item corresponding to this number is displayed, and the student's response

is compared to the' appropriate argument of the -exactc- tag. For instance,

when the -randp- picks the number 3, the item 4/5 is displayed; and the .

student's response is compared to the tag 4:5. With the -answer- and -wrong-

commands, punctuation marks are just taken as word separators. If punctuation

marks need to be checked in the student response, use the -exact- or -exactc-

commands.

8.11

Student Dialogs

At times you may want to allow such a wide variety of student responses

that use of the -answer- command would be unwieldy. If you ask the student

an open-ended question which requires him to answer in his own words, or

conversely, if in your lesson the student is asking questions of PLATO, the

number of "correct" responses will be huge. Two commands; -vocabs- and

-concept-, allow. you to Specify three types of items: ignorable words,

required words and their synonyms, and ideas or concepts which are anticipated

student responses. The student's response will be judged "ok" if the idea

of the student response is contained in one of the author anticipated responses

(tag of the -concept- command) and if the words used in the student's response

. are part of the large vocabulary specified in the tag of the -vocabs- command.

Here is a simple example:

unit heating
vocabs therm,<a,thermostat,that,which,is,device,it,the>

(controls,regulates)
(heat, temperature, furnace)

unit question
at 805
write What does a thermostat do?

arrow 1010
specs bumpshift
concept controls temperature

StUdent responses like "It is a device that regulates temperature." or "It

controls the heat." or "A thermostat regulates heat:" are all judged "ok"

by the single -concept- command.

The - concept- and -vocabs commands are very useful in situations which

require the student to describe a pro6ess, such as how to prapate spec"mens

for a biology experiment;- or situations in which the student nqeds to elicit

information"from PLATO, as in a lesson on medical diagnosis. !

Note: This disCussion of -concept- and -vocabs- is not intended to be

complete. Rather, it is included here to alert you to more of the capabilities

of PLATO for interacting with students.

1 2

9.1

9. More Display Features

Additional Features of -at-. and -write-

We have seen that an -at- command is used to position text on the panel.

The -at- command also sets up a left margin for succeeding lines of a con-

tinued -write- statement.

at 1010

write When in
the course
of human events

The word "When" will begin at 1010, "the" will begin 1110, and "of" will

begin at 1210. If there are more characters in the tag of the -write- than

will fit on the line, the writing wraps around to the next line. The margin

set by the -at- command still holds. The. statements

at 1055

write When in
the course
of human events

will appear on the panel like this:

When in
the course
of human e
vents

The characters "vents" will not fit on line 12, so they are written starting

at 1355.

Two consecutive -write- commands with no intervening -at- will cause the

second -write- tag to begin immediately after the first. These statements

at 1604

write The cow jumped
write over the moon.

will appear on the panel as:

The cow jumpedover the moon.

1 is 3,

9.2

If a space is written either after "jumped" or before "over" the sentence

will be displayed with correct spacing.

A character location is a grid 8 dots wide and 16 dots high. The

panel location specified by the tag of the -at- command, with either a fine

or coarse grid format, refers to the lower left dot of the 8 by 16 character

box and not the lower left dot of a standard character. Each character is.

positioned in the 8 by 16 box in a manner which considers the height and

width of the character (for example, i is quite different from H). The

characters displayed by the statements

at 200,150
write Hi

age positioned in an 8 by 16 grid in figure 9.1.

I

6

t
location: 200,150

Figure 9.1 Character grid, 8 by.16 dots

location: 211,162

sct

9.3

Writing in Different Modes

The -mode command allows erasing characters from the display, or

erasing an area of the panel before displaying new material in'that area.

The terminal has three possible modes: write, erase, and rewrite. The

terminal is normally in write mode, but this may be altered by a -mode-

command. The thre\e possible tags of the -mode- command are Rerase",,"rewrite",

and "write".

When a -write command is executed and'the terminal is in erase mode, the

dots making up the -Olaracters are turned off (erased), instead of lip (written).

Below is an example.

at 1612

write This writing will disappear.

pause
mode erase
at 1612

write This writing will disappear.

mode Write

The sentence will be displayed, and when the student presses any key after the

-pause- command, the sentence will be_erased. You must return to write mode

after a -mode erase'- statement, or all subsequent writing will. be invisible.

When a new main unit is entered, PLATO automatically returns to write mode.

Rewrite mode causes the erasure of anything in the character space in

question before new writing -is displayed.

at 1204

write Write mode only "lights" the appropriate dots to

form the characters.

pause
at 1204

mode rewrite \

write Rewrite mode erases a'eh ratter space, then "lights"

the dots corresponding ti the.new text writing.

The systems' reserved word "mode" is set to -1 if you are in erase mode,

0 if in rewrite mode, and 1 if in write mode. The -mode- command may be used

conditionally, e.g.

mode v32,x,rewrite,write,rewrite,x

The "x" means that the mode presently in effect will not be changed.

1 1 5

9.4

A display may be erased by an -erase- comMand,/an appropriate -mode-

command, or by changing the main unit.. In the last case, the entire panel

is erased. This automatic erasure may be J
dden by placing the statement

inhibit erase

in the main unit containing the display to be retained. :When the student

leaves a unit containing an -inhibit erase- statement, his main unit is

changed, but all writing and drawing remains on the panel. If desired, -erase-

or -mode-_commands with appropriate tags can be used to erase parts of the

display no longer needed.

In the example in figure 9.2, the student is in unit "title". The

sentence "What is the prOduct?" is written, and there is an immediate jump

to unit "multiply". However, because of the -inhibit erase- statement in

unit "title", the sentence is not erase when the student jumps to a new

main unit (unit: "multiply"). When the student finishes an item, a check is

made (line 22 and unit "addohe") and if= he has completed 5 items without error

he is jumped to unit "thine". If he has fewer than 5 items correct on the first

attampt, he continues with the unit. The problem is erased by "writing" it

again in mode,erase (lines 23 25), and the student's response is erased

(lines 26 28). The.student is jumped to unit "multiply" and is presented

with another'problem. The -inhibit erase- on line 9 prevents the erasure of

the problem when the student is jumped to unit "done".
.

Another possible tag of the -inhibit- command is "arrow". The following

statement will inhibit the display Of the arrow.

inhibit arrow

All inhibits are cldared when a new main unit is entered or when an -inhibit-

command without a tag is executed.

The -erase- command with either ..a one-argument or a two-argument tag

has been .discussed,.: An -erase- command with no tag causes a full screen

\erase. This is useful when you want to erase all displa without changing

the main unit.

1 J. 6

9.5

1 *"first", ",second ", and "right" are defined in i.e.u.

2 unit title

3 inhibit erase'

4 at 910

5 write What is the product?

6 jump multiply
7

8 unit multiply
9 inhibit erase

10 randu first,10
11 randu second,10-

12 at 1215

13, write 0,first> x 0,secon0 =
14 arrow where+2
15 _ansv firstxsecond

16 do ntries,x,x,addone,x
17 wrongv first+secOhd
18 write That's addition.

19 no
20 write Try 0,firstxsecond>
21 endarrow
22 jump right-5,x,done,x
23 mode erase .

24 at : 1215

25 write Qs, first] x .6,secondp=

26 mode write
27 at where+2
28 erase 30 $$erases student answer

29 jump multiply

30 **

31 unit done

32 at 2420

33 size 2

34 write very good
35 size 0

36

37 unit addone

38 calc right+right+1

Figure 9.2 Units illustrating -inhibit-, -erase-, and -mode-

9.6

Figures Drawn from a Reference Location

The -rdraw- command is used to create drawings which need to be "moved",

"sized", or "rotated". When using -rdraw- you must specify a location with

an -at- command and all subsequent drawing is done with respect to that point.

If no -at- command is given, the location of the last panel activity is used

as the point of reference. Arguments in the tag of the -rdraw- statement can

be given in either fine grid coordinates (dots) or coarse grid coordinates,

(lines and characters). Analogous to the -draw- command, points of the -rdraw-

are separated by semicolons and fine grid xand y coordinates are separated

by a comma. The argument's of the -draw- statement are actual panel locations,

while the arguments of the -rdraw- are locations relative to the preceeding

-at-.

Below is an -rdraw- statement which draws a triangle wii" he coarse grid

location 1632 as the point of reference. Figure 9.3 shows how this triangle

appears to the student.

at 1632

rdraw '404;0;136,-1;404

The first (404), second (0), and fourth (404) points are in coarse grid' coordi-
.

nates, and the third point (136,-1) is a fine grid coordinate. All points are

relative to the reference (1632) specified by the preceeding -at- statement.

To find the actual panel locations specified by -rdraw- and the preceeding

reference point, one sinus the reference location with each argument in the

tag of the -rdraw-. This is summarized for this example in figure 9.4.-
,.

All -rdraw- commands can be "sized" by placing a -size- statement before

the -rdraw- statement.

at 1632
size. 2

rdraw 404;0;136,-.;404

The -at-, -size-,-and -rdraw- commands above produCe a triangle twice as large

as the triangle in figure 9.3. Each number in the tag of the -rdraw- is (in

effect) multiplied by 2.

9.7.

Figure 9.3. A triangle with -rdraw-

point of reference as specified by -at- i 1632

(fine grid is 248,256)

rdraw

point 1 point 3

point 2

point 4

point

1

tag

404

coarse or
fine grid,

coarse

location on display panel

. 1632 + 404 = 2036

2 0 coarse 1632 + 0 = 1632

3 136,-1 fine {248,256} + {136,-1) = 384,255

4 404 coarse 1632 + 404 = 2036

Figure 9-.4 Actual location of points specified by -rdraw- and -at-

119

9.8

Figure 9.5 shows the same -rdraw- statement used'in a -do- loop with

the degree of rotation increased on each iteration of the loop, creating a

pinwheel. (Iterative -do- statements are discussed in Chapter 11.) The

TUTOR code to produce the pinwheel is shown below.

unit' pinwheel
do triangle,v2±1,12
*

unit triangle
rotate 30*v2
at 1632
rdraw 404;0;136,-1;404

Figure 9.5 Pinwheel via -rdraw- and -do-

9.9

Charts and Graphs

While it is possible to create graphs using only -at-, -write-, -draw-,

-rdraw- and -circle- commands, TUTOR has commands which make it easy to con-

struct charts, label axes with descriptive legends or borders, and to construct .

bar or pie charts using any characters desired. Graphs with scaled rectilinear

axes, semi-log axes, or log-log axes may be drawn easily. Functions may be

plotted pointwise or continuously; in scaled coordinates relative to the origin.

Polar fundtions may also be plotted. These commands are described in detail-
.

in the graphing section of lesson "aids" (refer to Chapter 13).

Custom Made Characters

An author may need special symbols relevant to the subject matter of

his lesson, but which do not exist in the character set built into the ter--

minal. Some examples,of this are the Cyrillic alphabet, phonetic symbols,

chemical symbols, or even piCtures of animals.

In addition to the 126 characters built into the terminal (a, b, c, 1,

2, 3, A, B, C, etc.), there are 126 more character slotain the terminal-'

which can contain characters designed by an author. Each of these` characters,'

is associated with one of the keys on the keyset, but to access the special

character you must first press FONT (the Shifted key to the right of ERASE)

and then the standard key. Subsequent key presses are in the "alternate font";

pressing FONT again returns yqu to the regular font.

You may creates one or more special characters'by creating a new block

in a lesson and designating\it as a "charset" bloCk. When you enter the

charset block you are asked what key your character is to be associated with.

Then you design your character by moving a 'cursor on an enlarged grid repre.r

senting the charadter space. You may inspect the new character in actual size

before it is stored. You may modify characters or add new ones to the set at,_

any time.

The character set need not be part of the lesson using the special

characters; it may be in any lesson. To associate a character set with a

lesson for student use,-place a -charset- command in the lesson:

charset lesson,blockname

The "lesson" is the,name of the lesson in which.the character set is stored,

and "blockname" is the nai..e of the blocks containing the character set.

The -charset- command should be placed in the i.e.u. so that the character

set will be loaded into the terminal even if a student enters the lesson at a

restart unit (oee Chapter 10). Below is a typical i.e:u. containing a -charset-

comMand.

at 912
write LOADING CHARACTER SET

Please be patient --
Loading takes about 17 seconds

charset phonetics,ipa
erase

The -write- command inforMs the student of a short delay. The process takes

a few seconds and without this message the panel would be blank. The tag of

the -charset- command designates the lesson id which the character set is
\

found, in this case lesson named "phonetics", and the block name of the

character set, "ipa". The -erase- command erases the panel after the character

set has been loaded, prev ting the "LOADING . . Message from being super-

imposed on display meter 1.

A character set remains in the terminal even after the lesson which

uses it is no longer in use by students or authors. Thus you may frequently

find a terminal containing a character set other than the one you want to use.

There are three ways to load the desired character set into the terminal.

You may condense a lesson containing the proper -charset- command; you may

edit the charset block and press the NEXT key; or you may type, on the author

mode display, the word " charset" (without quotes), press NEXT; type the name

of the lesson containing the character set, press NEXT, and then type the block

name of the character set.

While_editing your lesson you may switch Between the built-in chara.:L,

and the -charset- characters by pres.sing,the FONT key. 'The same is true f,

the student working in the lesson.

Animation using special or regular characters is possible. Using the

iterative statement (discussed in Chapter 11) and rewritemode, a

character may be moved across the panel.

9.11

unit
mode
do

unit
at

Write

animate
rewrite-
moving,index÷100,400
moving
index,200

TheThe character, in this example a car, moves across the panel one dot at a

time. If any character is designed with its leftmost column of dots blank,

and rewrite mode is used, the old position will be erased as the character

is written at the new position: This allows a "continuous" movement, one

dot at a time, on the plasma panel. If the left-most two columns were blank,

the character could be advanced two dot=, at a time, and so forth. The -size-

and -rotate7 commands have no effect on special character sets.

The Micro Option

A string of characters (standard, special, or a combination of the two)

can be assigned to a single key. For example, assume an author has designed

the character for a grave accent mark (') and assigned it to the key g. For

the student to type the French word .1a- he would have to type "1, a, backspace,

FONT, g, FONT". But the author may create a "micro table" which assigns the

character string "backspace, FONT, g, FONT" to the letter "g". Then the student

may produce the entire character string (the properly placed ') by striking

the MICRO key,and then g.

To create a micro table, add a new block in your lesson and designate

it as a micro block. Specify the key which is to produce the string of keys,

and then specify the character string. For a micro table to be available in

fitudent mode, the lesson must contain the statement

micro lesson,blockname

where "lesson" is the name of the lesson containing the micro block and

"blockname' is the name of the micro block. As with charsets, the micro

blocks need not be inthe lesson which uses them. A convenient location

for the -micro- command is in the i.e.u.

123

9.12

Color Microfiche

A terminal may be equipped with a slide selector, allowing slide images

to be back projected through the plasma panel. Up to 256 colored slides,

in microfiche format, are randomly addressable by the computer. This allows

the superposition of graphically displayed text and drawings on color or

black and white slides. The -slide- command turns on the slide projector

and displays the slide specified in the tag of the -slide- command. Infor-

mation on the preparation and use of slides is available in the slides section

of lesson "aids" (refer to Chapter 13).

Touch and Audio

Auxiliary equipment available includes a touch panel, which allows the

student to touch the panel instead of typing his input on the keyset. The

touch panel has 256 individual addressable positions.

A random access audio device, under computer control, allows playing

any one of more than 4000 audio messages. Up to 21 minutes of audio messages

may be recorded on a random access audio disc.

Cover Design

The design on the cover of this manual was made using sized writing

and figures drawn with respect to a point of reference: The TUTOk code

which produces the design on the cover is presented in figure 9.6. This

is just an example of some of the display capabilities discussed in this

and previous chapters.

9.13

define degree =vl

unit cover
do sector,degree÷0,360,20
at 190,273 $$ erase center of figure
erase 15,5
at 203,268
write INTRODUCTION

to

size 2.5 $$.sized writing
at 202,213
write TUTOR
at 203,213 $$ write 3 times to make thick letters

write TUTOR
at 202,214
write TUTOR
size 0

at 3048
write James Ghesquiere

Celia Davis
Charlene Thompson

unit sector
rotate degree
at 250,250
rdraw 0,0;150,20000,120;-40,60;0,0

Figure 9.6 TUTOR code for cover design

)

10.1

10. Special Branching Features

Using the TERM Key

We have seen that a student may initiate a branch in the lesson by

pressing a HELP-type key, if the unit he is in contains a help-type command.

,The TERM key (please note that TERM is a shifted key) and its associated

command -term- also allow the student to move to a different section of the

lesson. However there is a major difference between -term--and -help-. The

-term- command is placed in-the unit the student is to be'sent to, not the

unit he is in now. For example:

unit quests
next abacus
at 505
write Following are some questions about the history of

computing machines.
If at any time you would like to review, press
-TERM and type the word "review" (without the quotes).

unit abacus

unit history
term review
at 503
write 600 B.C. Abacus comes into use

1642A.D. .Pascal builds first adding machine

1959 PLATO I

at 3010
write Press BACK to return.
end help

In any unit in the lesson, when the student presses TERM, the phrase

"What term?" and an arrow appear at the bottom of the panel. If be types

"review" and presses NEXT, he will proceed to unit "history". From unit

"history" pressing BACK or BACK1, or pressing NEXT (since unit "history"

contains an -end help- statement) will return him to the unit from which

the. TERM key was pressed (just as with HELP-type keys). Unlike the HELP-type

1't,

10.2

keys, the TERM key is active anywlere.in a lesson. If the "term" the student

enters exactly matches the tag of a -term- command, he will be taken to the

unit containing that -term- statement. If his "term" does not match the tag

of any -term-, his input is erased, along with the "What term?" message and

the arrow, and the TERM keypress is ignored.

Any number of -term- commands may appear in a lesson, but experienced

authors have found that the use of more than one or two -term- statements.

tends to confuse the student. The student must be informed early in the

lesson of available terms. Some authors use only one -term- statement:

term index

in their lesson. The TERM key takes the Student to a page listing all

the topics in the lesson, and the student chooses a topic. Of course such

an approach assumes a lesson structure which may not be appropriate in some

subjects.

Altering the Base Unit

If the student presses BACK or BACK1 from a unit in a sequence reached

by TERM or a HELP-type branch, he is returned to his base unit. However,

if there is a -back- or -backl- statement in the student's current main

unit and the corresponding key is pressed (BACK or BACK1), the student is

branched to the unit named in the tag of that -back- or -backl- statement

and the help sequence is continued. In other words, the execution of a

-back- or -backl- statement has precedence over the default function of a

BACK or BACK1 keypress terminating a help (or term) sequence.

The base unit may be altered by the author, if desired, with a -base-

command. The -base-.command with no tag clears the'base pointer so the

student is no longer in a help sequence and therefore has no base unit. The

-base- command with no tag changes the current help sequence to a main lesson

sequence. When using a -term- command in a topic index unit, for example,

it is usually desirable to clear the base unit pointer so the student starts

a new main lesson sequence.

10.3

unit topics

base
term index
at 803
write Press the number . .

store choice
no
jump choice-2,unita,unitb,etc.

Without the -base- command a student could conceivably be in a help

sequence with his base pointer set, reach unit "topics" by the TERM key,

proceed through a section of the lesson, enter another HELP sequence, then

press BACK1 and be returned to some unit Televant to the section he was in

before he pressed TERM and entered unit "topics".

You may wish to devise a structure whereby after a help sequence has

ended, the student is returned to a unit preceding the one in which he pressed

HELP, as in the units below.

unit geoma
data geohelp
next geomb

unit geomb
data geohelp
next geomc

unit geohelp

base geoma

end help

If the student presses DATA from either unit "geoma" or "geomb", he is

sent to unit "geohelp". But in either case he is returned to unit "geoma"

after completing unit "geohelp". If the student enters the help sequence from

unit "geomb", the base unit pointer is set to "geomb", but the -base geoma-

overrides this and sets the base unit pointer to "geoma". The base command

with a unit named in the tag makes the named unit the new base unit.

1 2

Finishing and Restarting a TUTOR Lesson

How does one end a TUTOR lesson? The statement

end lesson

may be placed at the logical end of'the lesson. When this statement is

encountered the student is returned to the "Welcome to PLATO" display. The

author could also insert a -write- statement in the last logical unit telling

the student he has finished the lesson and instructing him to press STOP1 to

exit.

Often a student will not complete an entire lesson in one session.. If the

lesson contains no .commands to the contrary, the student will begin in the first

unit of the lesson when he signs on again. To put this sequencing under the

control of the author, the -restart- command is available. There are three

forms of the -restart- command:

restart
restart unitname
restart lesson,unitname

When the student signs on after having signed off without completing a lesson,

he begins in the lesson and unit specified by the - restart- command last en-

countered. If a -restart- with no tag has been encountered, he begins in the

unit containing the -restart- command. If a -restart- command naming a unit or

a lesson and unit has been encountered, he begins in the named lesson and unit.

A "finish unit" may be designated in a lesson. This is a unit which is

executed whenever a student leaves a lesson by means of STOP1. The command

has the form

finish unitname

The statement should be placed in the i.e.u. to insure its being in effect

for students who enter the lesson in a "restart unit". The finish unit may

not contain any -write- or -show- commands, but it is a convenient place to

do any calculations, etc., which must be done to insure correct sequencing

when the student signs. on again. Note: The finish unit is not executed

when a student exits because of an -end lesson- statement.

11. Looping

The Iterative Form of the -do- Command

The apple was dropped in exercise G,,,,figure 3.5, by having a series of

-do- commands, one -do- command for each movement of the apple. The iterative

form of the -do- command will repeatedly -do- a unit.

do move,v37+1,7

Unit "move" is executed seven consecutive times as the variable v37 is incremented

from one to seven. 'The general form of the iterative -do- command is:

do unit,index÷start,end

The unit named in the first argument of the tag is executed until the current -

value of "index" is greater than "end". The value of "index" is increased by 1

each time the loop is completed. If the increment is to be different from 1,

it is specified as a fifth argument in the tag of the -do- command.

do unit,index+start,end,increment

The "index" must be a variable while "start", "end", and "increment" may be

constants, variables, or expressions.' A negative value for the increment

will cause the loop to go "backwards".

1 unit doit
2 calc radius+20
3 do circles,index±1,3
4 at 3020 ,

5 write Here are some circles.
6 *

7 unit circles
8 circle radius,256,256
9 calc radius+radius+20

Three circles will be drawn by the above units. After each circle is

drawn (line 8), "radius" is incremented by 20 dots (line 9), so the circles

will have radii of 20 dots, 40 dots, and 60 dots, respectively. A flow chart,

figure 11.1, illustrates the actions of these units.

130

11.2

Unit "circles" is done three times. The variable "index"'is incremented

automatically by TUTOR and compared to the ending value each time the loop is

done. If ten circles were needed instead of three, only the last argument for

the -do- statement, line 3, would need to be changed (from 3 to 10).

---111

set "radius"
to 20
"index" eqUals
1

draw a circle
with radius of
Iradius"'at-
256,256

add 20 to value
of "radius";
increment
"index" by 1

is "index"
greater
than 3

end of loop;
continue with
unit "doit"
line 4

A

no

Figure 11.1 Flow chart for iterative -do-

Figure 3.3 in Chapter 3 displayed a table of data by executing the same

unit several times. The eight -do- statements in figure 3.3 are replaced by

an iterative -do- statement in figure 11.2. The iterative -do- is also

(-used to set and increment th location of table entries by using "place" as

the index of the -do-. The TUTOR code in both figures 11.2 and 3.3 will

create the display in figure 3.4.

The -join- command may also be used in an iterative manner. The form

of the repeated -join- command is exactly the same as the repeated -do-

command. The -join- and -do- commands differ only in that -do- is a regular

command only, while -join- is executed in regular and judging state.

131

11.3

1 unit table
2 at 407

3 write Table of radii and circumferences. Press NEXT for

4 each entry to be displayed,

5 dr-aw 1224;2424;2462;1224;skip;1424;1462;skip;1243;

6 2443

7 at 230,296

8 write radius

9 at 360,296

10 write circumference

11 talc place- -7628 $$ point of reference

12 radius+1 $$ set initial radius,

13 do circ,index+1,8

14

15 unit circ

16 pause
17 circle radius,90,230

18 at place

19 show radius

20 at place+20

21 show 27rxradius

22 talc place+place+100 $$ move down 1 line

23 talc radius÷radius+10 $$ increase the radius

Figure 11.2 Revised figure 3.3 using iterative -do-

The -goto- Command

The -do- and -join- commands are used to attach units to a main unit.

The -goto- command is also used for this purpose. We have seen that when a

-do- Lommand is executed, PLATO treats the contents of the attached unit as

if they appeared right in the main unit. Commands below the -do- or -join-

are processed after the statements in the attached unit are processed.

Executing a -jump- command, on the otherhand, causes an immediate branch to

a new main unit, and commands below the -jump- are not executed.

Whdn a -goto- command is executed, the main unit is not changed, but

commands below the -goto- are not done. The units in figure 11.3 illustrate

how -goto- can be used to take a student "out" of a unit, yet not disrupt his

path through the material. Since -goto- is a regular command, it will be done

132

11.4

only if-the student's response matches the -answer- tag on line 11 of

figure 11.3. If;,4o, the student will be branched to unit "blithe". When

he presses NEXT he will proceed to unit "stories". The pointer set by the

-next- command in unit "novels" remains in effect in unit "blithe", because
1

unit 'blithe" is not! a new main unit. A student whose response does not

match the tag of the -answer- command on line 11 will not see unit "blithe";

he continues in unit "novels",.seeing the portion of the unit below line 13.

When he competes the unit and presses NEXT he will proceed to unit "stories".
.

1 unit novels
2 next stories
3 at 810
4 write What Hawthorne novel is concerned with the conflict
5 between social tradition and e tistic seif-expressio

n?

1108

okspell,bumpshift,
<the> marble faun

write The main conflict in that novel is between
different forms of artistic expression.'

answer <the> blithedale romance
goto bli
answer <the> carlet letter
write Yes. he main characters' dress reinforces the

confli t symbolically.
at 1810
write The magistrates are always dressed in grey or black,

with rigid hats and stiff. shirts, while Pearl is
always dressed in bright colors.

6 arrow
7 specs
8., wrong
9

10
11

12

13

14

15

16

17

18

19

20 **

21 **
22 unit blithe
23 at 1810
24 write The contrast is embodied in the differences between

the
'25 two heroines.
26 **
27 unit stories

more TUTOR code

Figure 11.3 Code for literature units

11.5

The -goto- command may also be used in a conditional form. After an

initial -Write- statement, unit "history" in figure 11.4 is completed by

either asking a question, going to unit "lee", or going to unit "grant"

depending on the value of "errors". This process is summarized in figure 11.5.

1 unit history
2 at 712

3 write During the CiVil War, . . .

4 goto errora,x,lee,grant,grant,x

5 arrow 1122
/

6 specs okextra,bumpshift
7 next grant

answer ..

unit grant

unit lee

Figure 11.4 -goto- used conditionally

value of "errors" complete unit "history" with:

I
negative a question, lines 5 through end of unit "history"

zero unit "lee"

one ,I unit "grant"

two unit "grant"

more than two a question, lines 5 through end of unit "history"

-.-

Figure 11,5 Summary of effect of conditional -goto- in unit "history"

.1"

11.6

The -goto- Command and the "q" Branch.

The -goto- command is usually used in the conditional form. The

current main unit in the statement below is continued or completed with unit

"one" "two", or "three".

goto counter,x,two,x,one,three,x

To stop the processing of regular commands in the current main unit, insert

the argument "q" (for quit) in the corresponding position of the -goto- tag.

The following tag is summarized in figure 11.6

goto counter,x,two,q

The "q" or quit branch can effectively be used as part of a calculational

looping or branching sequence. When the "q" branch is used with fUnotion key

branching commands, it means "clear" that pointer for the current main unit.

goto

value of "counter"

eciunter,x,two,q

Tag interpretation

negative x fall through to next TUTOR command

zero two complete main unit with unit"two"

one and greater q complete main unit with this -goto-

statement, do NOT, fall throughto

next TUTOR command

Figure 11.6 Summary of a conditional -goto- statement using "q"

12.1

12. Additional Ways to Use Variables and Do Calculation

Storing and Showing Characters ,

Numerical expressions are evaluated and placed into variable's with the

-store-\command. Characters can be placed into variables named in the tag

of the -storea- command in an analogous manner. The -showa- command dis-

plays in alphanumeric form the contents of the variable named in its tag.

u It name
at\ 1620

Write What is -your name?

arrow 2025

storea student $$ "student" is defined previously

ok

write Thanks,

showa student

Ten alphanumeric characters can be placed in each TUTOR variable./ The -storea-

and -showa- commards are designed for usewith alphanumeric chara

the -store-, -show-, and -showt- commands are designed for use wi

ters, whereas

h numbers.

.

Each TUTOR variable can be displayed as a number with the -show- or

-showt- command, or in "scientific notation" with the.-showe-= command. The

/-
varia 'ble can -also be displayed as a group of letters. with the -showa- command

or as an octal nuMber,with the -shOwo- command. Even though there are several

formats in which the same TUTOR variable can be displayed, in general only one

format is.appropriate for the information stored in a given.variable. In

other words, if letters are stored in v23, it is only appropriate to display

that information with a -showa- command, and not a -show- or -showe-.

Conditional Calculations

In addition to the -talc- command, there are two commands which perform

one of a list of calculations based on some condition. The -calcc- command

(pronounced: talc see) will perform one of several different calculations

based on the value of an index expression, whereas the - talcs- command (pro-

nounced: talc ess) will assign to the same variable one of several different

values based on the value 'of an index expression. The format of-the

136

12.2

-calcc- and -calcs- commands follows the usual TUTOR conditional format:

index expression, negative argument, zero argument, through the positive

integer arguments.

The index expression for a -calcc- or -calcs- may be a single variable

or a complex'arithmetic expression containing several variables and operators.

The statement

calcc v1+3174,v2+.20,v14÷(v12) ,v37+v20+3v6,,v14÷0,,

will evaluate the index expression (v1+3v4) and execute the calculation in the

corresponding position of the tag of the -calcc- as summarized in figure 12.1.

If no calculation is to be performed (a "fall through" situation) for the con-

ditional calculation commands, no argument is entered in the -appropriate

position of the -calcc- (or -calcs-) tag. In the above example, no calcula-

tion is performed when the index expression (v1+3v4) equals 2 or when the

index expression is 4 or larger.

calcc v1+3v4,v2+20,v14÷(v12)
2
,v37÷v20+3v6v144),-018.

value of "v1+3v41' calculation,to be performed

negative v2+.20

zero v14÷(v12)
2

one v374-v20+3v6

two none

three v14-4

four and- greater none
_---------

Figure 12.1 Conditional calculation command, the -calcc-

To assign one of several different values to the same variable you can

use the -calcs- command. The statement

calcs locate+3,history÷8,4,history+1,0,6history-1-

12.3

causes different values to be assigned to the defined variable "history"

based on the value of the expression "locate+3". Figure 12.2 summarizes

the assigned value of "history" as a function of "locate+3".

calcs locate+3,history÷8,4,history+1,0,6history-1

value of "locate+3" value assigned to "history"

negative history{-8

zero history+4

one history -- history +1

two history+0

three history+6

four no change to "history"

five and greater history{-history -1

Figure 12.2 Example of -calcs- statement

For a molecular weight drill in chemistry, the -calcs-, -writec-, and

-ansv- can be used very effectively. The use of conditional commands and

defined variables allows an easy expansion of the questions presented by

unit "molwts". By adding arguments to lines 5 and 7 of this unit, one could

have a drill with ten or more questions of the same or increasing level of

difficulty. By including the "sampling without replacement" method of

choosing the value of "problem" (i.e., -setperm-, -randp-, -remove-, and

-modperm- commands), a drill could be written which automatically reviews

non-mastered items.

1 unit molwts
2 *problem and molwt are previously defined and initialized

3 at 1212

4 write What is the molecular weight of $$ leave 1 space

5 writec problem,H 0,HN0,CaC1
6 write

2 2
?

7 calcs problem,molwt4-,18,63,111
8 arrow 1819

9 ansv molwt,1%
10 no
11 write Refer to the Periodic Table
12 and sum the Atomic Weights.

1 J

12.4

Logical Operators

By combining the conditional format of TUTOR commands and the power of

logical operators, a new dimension is added to the index expressioh of all

conditional commands. The basic logical operators available are: =, <,

<, >, >, which mean equal, not equal, less than, less than or equal to, greater

than, and greater than or equal to, respectively. If a logical expression is

true, it has a value of -1; if false, a value of O. For the -do- statement

do correct=3,out,more

unit out is attached if "correct" equals 3, and unit "more" is attached if

"correct" has any value different from 3. The statement

go to errors>4,review,x

means the current main unit will be completed with unit "review" if "errors"

is greater than 4. If "errors" is equal to or less than 4 (i.e., if the

expression is false), the logical expression has a value of 0 and one "fails

through" to the following TUTOR statement because of the x.

Logical operators may appear in any type of calculation or expression.

The -calc- statement

calc radius-- 5Q -37x (3 =y)

gives "radius" a value of 87 if "y" is equal to 3. If "y" is not equal to 3

(if the expression is false), "radius" is assigned the value of 50; see

figure 12.3.

using the expression: 50-37x(3=y)

if y=3 if 573

50-37x(3=3) 50-37x(3=4)

50-37x(true) 50-37x(false)

50-37x(-1) 50-37x(0)

50+37 50-0

87 50

Figure 12.3 Evaluating an expression containing a logical operator

1_)0

12.5

The combination of logical expressions is possible with and and

or. For the expression (3>y and 6=x) a true value (-1,)' is obtained

if 3 is greater than "y" and if 6 is equal to "x". Under/all other conditions

a 0 (false) is obtained. For the expression (3>y or(6=x) a true value is

obtained if either 3 is greater than "y", or if 6 is equal to "x", or if both

conditions are true. The combining-operations, and and or, make sense

only when used with logical expressions. The expression "radius and 41"

is meaningless and will produde unpredictable results. (For those interested,

there are also operators for/the following bit manipulations: mask, union,

difference, and shifts within a word. All bit manipulations must be done

with the integer-representation of TUTOR variables. Refer to lesson "aids"

for details; see Chapte4 13.)

Segmented Variables

As a student completes a portion of a lesson, some evaluation of progress .

may be made and the need for review'may be decided. Often one need only set

a "flag" indicating if review is needed or not. Each student variable is

composed of 60 "bits", each of which can be set to either 0 or 1. When only

a yes or no decision needsto be made (e.g. does this student need review?)

it may be wasteful to set aside an entire student variable when only one bit

would suffice.

The ability to segment defined variables provides a very easy method of

storing many pieces of information pqr variable, instead of only one piece of-

information per variable. If oneC cOhsiders the situation of reviewing portions

of a lesson, a value of 0 may mean "no review" and a value of 1 may indicate

review is needed. This information could be stored for 60-different portions

of a lesson(s) in a single variable by including the following -define- tags

with your -define- set:

define yourset
segment,review=v1,1
norev=0,yesrev=1 $$ you may define constants

The student variable "v1" is segmented into 60 pieces (or bytes), and

each piece is one bit long. Each bit can have a value of 0 or 1, so each bit

can "remember" if there should be review (if the bit'equals 1) or if no review

140

12.6

is needed (if the bit equals 0). The size of the byte, one bit in this

example, is indicated by the last argument of the segment of the -define-

statement.

The 43rd segment is referenced by the format: review(43). For example:

talc review(43)44 $$ 1. means yes; review is needed

A defined segment may be used as an index expression in a conditional

form of a command and as part of a logical statement.

goto review(12),x,ok,needed
goto review(12)=yesrev,needed,ok $$ yesrev is defined as 1

These two -goto- statements are equivalent. Unit "ok" is attached to the

main unit if the twelfth segment of "review" equals 0; if the 12th segment

of the defined variable."review" equals 1, unit "needed" is attached.

The byte size may be as large as 59 bits, but a byte size of mere than

30 bits is no real savings of storage space. The following statements are,

an example of a variable segmented into ten pieces, where each piece is 6

bits and can contain an integer as large as 63. The third segment is

assigned the value of 22 and the value is displayed.

define yourset \$$ all defined variables should be in the i.e.u.
segment,errors=v14,6

*-

talc errors (3){2'
at 220

write The third error segment= (s,errors(3)).

Only integers can be stored in segmented variables. Non-integral numbers are

represented by the computer in a format which requires an exponential, sign,

and base portion and therefore cannot be directly stored in a "segment" of a

variable as an integer can be stored. Figure 12.4 summarizes the maximum integer

value, bits required,-and the number of segments available for each 60 bit

TUTOR variable which is segmented. If negative and positive numbers are

stored in segmented variables, one bit per segment must be reserved for the

sign. This discussion is intended to be only an introduction to the possible

uses of segmented variables; refer to lesson "aids" (see Chapter 13) for

details.

12.7

maximum
integer
value

bits per
segment

segments
per TUTOR
variable

maximum
integer
value

bits per
segment

segments
per TUTOR
variable

1 1 60 -- 255 8 7

3 2 30 511 9 6

7 3 20 1023 10 6

15 4 15 4095 12 5

31 5 12 '32767 15 4

63 6 10 2
20
-1 20 3

127 7 8 23 -1 30 2

Figure 12.4 Segmented TUTOR Variables

Defined Functions

Many common functions are built into the TUTOR language. These systems

defined functions are listed in figure 1'2.5. Functions may also be specified

in the tag of the -define- command. Some examples are provided in figure 12.6

and illustrated in figure 12.7. Defined functions may be part of any calcula-

tion or condition. When encountered by TUTOR a defined function is placed in

parentheses and is replaced by its "defined" meaning.

function description

abs(x) .absolute value of x

int(x) integer part of x

frac(x) fractional part of .x

round(x) round x to the nearest integer

sqrt(x) positive square root of x

log(x) base 10 logarithm of x

ln(x) base e logarithm of x

exp(x) raise e to the power of x
sin(x) sine function (x in radians)

cos(x) cosine function (x in radians)

arctan(x) arctangent function (x in radians)

bitcnt(x) number of bits set in variable

not(x) inverts logical truth values

Figure 12.5 Defined systems functions

112

12.8

You may also define your own functions. A function specified in the tab

of a -define- command may involve a previously defined quantity on the right

side of the equal sign, as on lines 3-5 of figure 12.6. The argument of the

/function on the left side of the equal sign is really a "dummy" argument

("r" on lines 1 and 2, "dummy" on line 4 of figure 12.6). Thus if "r" or

"dummy" were previously defined, these functions of "r" or "dummy" would be

rejected by TUTOR. A defined function may also contain an assignment arrow

(line 5, figure 12.6).

As illustrated in figure 12.6, defined variables (line 3), defined

functions (14.aes 1, 2, 4, and 5), segmented variables (line 6), and defined

characterS (line 7) may allhe part of the same -define- statement. This

discussion is only an introduction to the possible uses of'defined functions;

refer to lesson "aids" (see Chapter 13) for details.

1 define circ(r)=27rr $$ circumference of a circle

2 vol(r)=4ffr
3
/3 $$ volume of sphere

3 q=v6,review=v7,result=v8

4 funct(dummy)=dummy
2
-3q

5 assign=(result4-result+20)

6 segment,time=v126,6

7 yes=1,no=0

Figure 12.6 Functions specified by -define-

TUTOR statements using
-define- of figure 12.5

value of "result"
after -calc-

calc result+circ(5) 107r

calc result4-3*vol(2) 3*471.2
3
/3=3271-

calc result+funct(8) $$ q=10 64-30=34

calc assign $$ effect is to add 20 to result

calc result÷int(3.7) 3

calc result±round(3.7) 4

calc result÷log(20) 1.3

Figure 12.7 Examples of defined functions

13.1

13. What NEXT?

When you finish the material in lesson "introtutor", the chapters in

this book, and the exercises, you will have completed this introductory

TUTOR training program. This chapter offers some suggestions to guide you

in your future activities with PLATO.

Developing Lessons

You will be most successful if you choose a short topic for your first

lesson. This will help you to determine the feasibility of using PLATO

for your subject matter. After your first lesson is-written, you may want

to ask some of your colleagues to use your lesson as a student. They may

offer useful criticism about content and presentation, and will also uncover

any program errors you may have missed.

After making revisions based on your colleagues'' suggestions, arrange

to have 5 or 1$ students use your lesson. You should be present at these

sessions to observe the students' reactions to the lesson and to see whether

the lesson fulfills your educational goals. The students may offer more

suggestions for revision. You should use PLATO's automatic data collection

features while testing the lesson. (Refer to "aids" for a complete descrip-

tion of data collection features.)

After your first topit is complete, you may want to write a few more

modules and test them in the same way. Then you can decide which parts of

your course should be coordinated with PLATO.

Learning More TUTOR

Lesson "aids", available in student mode, is an on-line reference manual

of the TUTOR language. It contains overveiws of all areas of TUTOR, descrip-

tions of all TUTOR commands, summary lists of commands and systems reserved

words, and information on lesson design and implementation.

Before working on some new aspect of your lesson, you should read a

relevant portion of "aide". Write test units experimenting-with the commands

that are new to you until you feel comfortable with them. This experimentation

14,1

13.2

may'require reading several sections of "aids" and talking with TUTOR con-

sulta\ts. As you do more testing, you will understand more of the capabiltties

of the\TUTOR language. An advanced TUTOR manual, entitled "The TUTOR Language"

is available as well as several other publications. All publications may

be purchased by contacting PLATO Publications, Computer-based Education

Research Laboratory, University of Illinois, Urbana, Illinois 61801.

Keeping Current

The lesson "notes" contains many different kinds of notes as the index

display from lesson "notes" indicates, figure 13.1. The "New System Features

and "General Interest Notes" sections let-you maintain a current-knowledge

of TUTOR.

In the "New System Featuree section, systems programmers enter brief

descriptions of new TUTOR features or changes in existing TUTOR features.

These "New System Features" are more thoroughly described in lesson "aids".

The "General Interest Notes" section of lesson "notes" has entries from

authors as well as systems programmers. Information on how to write notes

and comments is available by pressing the HELP key while in "notes".

You should glance at both "New System Features" and "General Interest

Notes" every day or two. All notes have identifying keywords so you can

survey the topic list to decide which ones you want to read. If you do not

read these two sections of "notes", you will not be aware of changes in

TUTOR; and you will miss the opportunity to take part in the discussion of

what directions PLATO and TUTOR should take.

Getting Help

There may be times when you need additional help for your specific

problem. A TUTOR consultant can be contacted via the terminal by pressing

the TERM key and entering "consult" (no quote marks). Personal notes may

also be sent directly to a consultant or your specific luestions may be

discussed in'the HELP portion of lesion "notes". More details on obtaining

assistance are available in "aids".

A more direct way of getting help is to ask the person at the next

terminal. If he is an author, he might be able to help you. Generally

the attitude of authors is one of willingness to help other authors if

they can. Most PLATO users have a spirit of cooperation!

1 -1')

13.3

--PLA,T 0 NOTE S

03/22 16.16

CHOOSE AN OPTION...

a. Read & respond to requests for HELP

A. Write a request for HELP

b. Read & respond to GENERAL INTEREST notes
B. Write 'a note of GENERAL INTEREST

c. Read & respond to PERSONAL notes to you
C. Write PERSONAL notes to others

d. Read notes about NEW SYSTEM FEATURES

e. Read OLD help notes
f. Read OLD general interest notes
g. Read OLD system features notes

h. Report a broken terminal

Press -HELP- for instructions.

Figure 13.1 Index display from lesson "notes"

146

13.4

P

On rare occasions you will want a print of your lesson to track down a

program error. To obtain a print, press Viift-DATA from the Author Mode

display; then choose option "p". ."
,

Other Features and Resources

There are several TUTOR lessons which contain general information on

courseware currently available. These lessons are summarized in figure 13.2.

Student Data -- It is possible to collect data on student performance

in a lesson or parts of a lesson. Data such as the number of arrows the

student encountered, the amount of time he spent in an area of the lesson,

the number of correct and incorrect responses, and the number of times he

requested help may be collected. Correct and incorrect student'responses

may also be collected and reviewed by the lesson author or instructor. This

data is automatically stored by PLATO and is available in both a formative

and summative manner. Lesson "aids" has a complete description ,of all data

options.

Router Lessons There are TUTOR lessons which can be used to organize

many instructional modules into a coherent set of modules. The set of

instructional modules can be written by one author, a group of authors, or

many different authors. The router lesson is used to access each module

in the appropriate sequence for your students. There is a complete description

in lesson "aids".

PEER Group -- The activities of the PLATO Educational Evaluation and

Research Group are partially listed in figure 13.3. There is an on-line

statistical package available to all authors in a PLATO 1Psson named "stat".

13.5

lesson name use in student
or author mode

description

sample student mode allows one to examine PLATO

lessons in many subject areas

topics student mode catalog of PLATO materials

which have been used with

students

catalog author mode short description of all lessons

on PLATO

authors author mode listing of, all PLATO authors

Figure 13.2 Lessons containing general information on courseware

PEER GROUP -- Research and Service program

Student interactions with PLATO

Evaluation as an approach to instructional design

Measurement and prediction of instructional effectiveness

Maintenance of CERL statistical package

Direct consultation with authors in evaluation, design, and

implementation

Figure 13.3 PEER group activities

1.48

A.1

Appendix A: Editing in TUTOR

Lesson Data

Before learning to edit in TUTOR you should be familiat with the keyset.

If you have not done so already, use lesson "help" as a student for an intro,-

duction to the keyset. You should also be familiar with the sign-on procedure

as explained by your site dire 'r.

When you are editing your lesson you are actually in a TUTOR lesson called

the "editor". The TUTOR editor-:has many aids for authors incorporated into

its structure. You may obtain aid by pressing the HELP key. Consequently

there is little need for a comprehensive printed guide to TUTOR editing. This

appendix is meant to introduce you to editing. -After you know a few editing

directives, you can use the HELP key in the editor to learn.,more advanced

options which you will not formally learn now.

To start learning how to edit, enter your lesson name on the author mode

display. The first time you enter yout lesson, you should fill in the descrip-

tive data requested on the DATA display, figure A.1. Type the number corresponding

to the data you wish to enter, type the information requested, then press NEXT.

Type your last name first (e.g., Bitzer, Donald L.), so that lessons can auto-
.

matically be alphabe:dzed by authors' names. Data like 'your name, department,

and phone number ate obvious. The "change code" is the security code you must

use to edit or change the lesson. Make sure you remember it or you will not

be able to edit your own lesson without help from the compUter operator!. If

you leave the "change code" blank, anyone may edit your lesson, so enter some

change code. The "inspect code" is the security code anyone must have to look

at your lesson. If yOu do not mind. who sees your lesson, leave it blank. Finish

with a brief one-line description of your lesson. You may change any of this

data later by entering your lesson and pressing DATA

When you press NEXT from the lesson data display you will reach the block

listing display which lists the name of your lesson and block names. If yours

is a new lesson, it will have only one block, "a".

119

A.2

Lesson name ---- introtulor
Disk pack beatrice
Starting date 09/13/73
Last edited 06/26/75 16.45.07,

by celia of pso
at 17-29

SECURITY CODES:
a. To change .esson --

b. TO inspect resson
c. To access commr --
d. To -use- lesson,---
e. To -jumpout- to

Authc- InformatiOn:

_ ****#t.
- *******,-

- blank. TO ALL
- blknk- OPEN TO ALL
- blaAk -- OPEN TO ALL

1. Name ghesquiere,
2. Dept.. /Affiliation CERL

. Telephone number 3-CERL

Lesswi Information:

4. Subject Matter CAI

5. Intended Audience college,

6. One line description of lesson:

introduction to TUTOR

J

Figure A.1 Lesson data display

Lesson Security Code (Lesson Change Code)

On the lesson data display you entered .a`change code for your lesson.

But, as of now, PLATO has no change code associated with your records. It

only knows a name, a course, and your sign-on password. You will need to

enter a security code which PLATO stores with yOur records to al,lov you to

edit your lesson. To do this, return to.the Author Mode display by pressing

BACK; then press shift-DATA. Choose option "s", Which should bring you.to a

display resembling figure A.2. At this "lesson security code"-display type

the same code you entered as a change code-for your\lesson:' A randOM number

of XXX's will appear as yOu type to prevent anyone f om seeing the letters

you areltyping. Then press NEXT to return to the Au hor Mode page; Now

reenter your lesson by typing the name and pressing NEXT.

A.3

Type in your lesson security code--

XfXXXXXXXXXXXXXX

Press -BACK- to exit

Figure A.2 Lesson security code display

INSPECT ONLY as an Author

If the lesson security code stored with your records does NOT match the

lesson security code entered on the lesson data display, figure A.1, then.

you can only inspect a TUTOR lesson in author mode. If your block listing

display has the "INSPECT ONLY" message, as in figure A.3, you cannot change

any code in that lesson. That is, you cannot insert, delete, or replace

any TUTOR code. If your block listing display has the "INSPECT ONLY" message,

return to the "Lesson Security Code" section, page A.2.

1

A.4

LESSON -- introtutor HELP available

INSPECT ONLY

BLOCK NAME

a index def
b throw
c newton
d pec
e wifehus
f manson
g pac review

INSPECT ONLY

Figure A.3 Block Listing Display, INSPECT ONLY

Inserting TUTOR Code

From the block listing display enter block "a" by pressing "a". You
are now on the "line display". To begin inserting TUTOR code, type the letter
nit!, which stands for "insert", and press NEXT. Now you are ready to type a

line of TUTOR code. You may wish to use unit "gorge" from Chapter 1 for
practice in editing. It is reprinted here for convenience.

unit gorge
at 1203

write Where is Louis S. B. Leaky's anthropological dig?
arrow 1401
specs bump shift,okspell
answer <the,it,is,in,at,kenya> olduvai (gorge,canyon)
write Homo habilis was discovered there.
wrong <it,is,the,at,in,tanzania> gombe stream research cen

ter

write That's the site of Jane Goodall's work with chimpanz
ees.

A:5

Type the command -unit-. Then press TAB so the tag portion of the line is

spaced over, and type the tag "gorge". (Do not type the hyphens or quote

marks in your lesson.) Press NEXT to enter the second line of TUTOR code.

When you have finished inserting the second line, press BACK to return to

the line display.-

To insert code someplace after the top line of the display, type "i"

and then the number of the line after which you want to insert, then press

NEXT. Type "i2" now, and press NEXT to insert the third line of unit:"gorge".

When you enter a block you are always at.the first, or top, line of the

block To go forward, type "f", then the number of lines you want to roll

the display forward, then press NEXT. To go backward, or down,:type "b",

followed by the number of lines, then press, NEXT. With "i", "f", and "b"

as well as many other editing directives, if you do not enter a number, PLATO

assumes a 1. Thus "f" is equivalent to "f1". Practice using these three

directives now. Insert the rest of unit "gorge" and move forward and back

until you feel comfortable using these directives.

Deleting and Replacing Lines

To delete a line, you must first bring the line o the top of the display.

When the offending line is at the top, type "d", then press shift-HELP to

delete it. If you have a superfluous line in your unit "gorge", bring it to

the top and delete it now. (If yOur unit "gorge" is correct, choose some line

to delete for practice. You can then insert it again.) There is one caution

to observe when using "d": "d10", for instance, means "delete 10 lines

starting with the top line." It does not mean "delete the tenth line'. When

you delete, you must bring the unwanted line to the top of the display before

deleting.

To replace a line, type "r" and then the line number (if no number is

entered, a 1 is again assumed) then press NEXT. Retype the line. Then press

either NEXT to replace the following line, or BACK to stop replacing. Practice

using "r" now. Replace a line containing typing errors, if you have one; if

not, replace any line for practice.

A. 6

The COPY and EDIT keys

The COPY key (which may have a carat on the keycap, A) will copy into

a line being "inserted" or "replaced" from the line appearing immediately

above it on the panel. Each press of the COPY key will copy another "word"

(any characters bounded by spaces or punctuation) into the line being worked
on. At any point, pressing the shift-COPY key will copy the rest of the line.

The first press of the EDIT key (to the right of the NEXT key) will erase

the entire line being worked on. Successive presses of EDIT will return

"words" to that line, one at a' time, in a fashion similar to the COPY key.

These keys are useful for correcting errors without having to retype an entire
line. Practice using COPY and EDIT while inserting or replacing until you

are familiar with their use.

Testing Your Lesson in Student Mode

From either the line display or the block display, you can press shift-STOP

to enter. your lesson in student mode. Do this now. If there are no errors in

your TUTOR code, you will see the unit as it appears to a student. If your

code has errors, you will see a display entitled "condense errors and warnings".

On this display is listed TUTOR code which PLATO could not interpret, the name'of

the unit in which the error Occurs, and the lesson part and bloCk. ("Lesson

part" refers to the number of block display pages-, or "parts", in a lesson.

Almost all TUTOR lessons are 1-part lessons.) Some common condense errors

include mistyping a TUTOR command or forgetting to press TAB between the

command and the tag. You should correct the errors before using the lesson

in student mode. Press shift-STOP if you had any condense errors. This re-

turns you to the block display. If you press NEXT from the condense errors

display, PLATO will attemptto execute your lesson ignoring the lines containing
errors. After you have corrected the errors, condense the lesson again (shift-STOP).

To return from student mode to the author options display, press shift-STOP.

A.7

Additional Editing Options

Complete instructions are always available when you are editing. Press

HELP from almost any display for a description of the options available while

at that display.

To create a new block, press the shifted letter of the block you want to

add after. For example, press shift-a to create a block after block "a".

After creating a block you must insert something in it, or it will disappear.

An exception to this is block "a"; it is always there, whether it contains

anything or not.

To move froi one block to another, first return to the block display by

pressing BACK, then enter the other block by typing its letter.

Figure A.4 summarizes the various displays of author mode and gives the

keys required to get from one display to another. You may wish to press HELP

from each display and glance briefly at the options and directives available.

Do not try to memorize them; you will find it easier to learn them as you

need them.

Line
Display

shift-DATA

lesson.
name

BACK

V

Listing

NEXT or

block letter
Block

DATA

BACK

4111

BACK

Author
Options

BACK

Figure A.4 Flow diagram of editing displays

155

Lesson
Data

B.1

Appendix B: Summary of TUTOR Coiwands, -specs- Options, and Systems Reserved Words

This list contains only those commands, -specs- options, and systems reserved

words described in this book. For others, see lesson "aids".

TUTOR Commands:

* ansv specifies numerical answer, a tolerance (percent or absolute) is
allowed

* answer specifies a correct student response

arrow plots arrow on panel at tag location and allows student input

at specifies a location on the panel (either coarse or fine grid)

back specifies unit to proceed to if BACK key is pressed

backl specifies unit to proceed to if BACK1 is pressed

base alters base unit to unit named in tag or clears base pointer if no

tag is used

talc stores a value in a variable and permits general computational operations

caicc conditionally performs one of a list of calculations, depending on
value of an expression

talcs sets a variable to one of a list of values depending on value of an

expression

charset loads specified character set into terminal

circle draws a circle or arc on the panel; tag (fine grid) specifies radius
and center

circleb draws broken circle or arc

* concept specifies idea of a correct student response; also see -vocabs-

data specifies unit to proceed to if DATA key is pressed

datal specifies unit, to proceed to if DATA1 is pressed

define allows author to give names to student variables. A defined name

must be 7 or fewer characters and must not begin with a number or
operator

do attaches unit named in tag of -do- to unit in which -do- command appears

draw draws lines between panel Locations given in tag

end ends a help sequence (tag "help") or a lesson (tag "lesson")

indicates judging command, all non-starred commands are regular

156

B.2

endarrow delimits commands in a unit pertinent to the preceeding arrow

erase erases number of characters (1 argument tag) or block of characters
and lines (2 argument tag) or entire panel (no tag)

* exact specifies correct student response, including punctuation and spaces

* exactc conditional form of -exact- command

finish specifies which unit will be executed at exit via STOP1

goto attaches unit named in tag to present unit, but commands below -goto-
are not executed

help specifies unit to proceed to if HELP key is pressed

helpl specifies unit to proceed to if HELP1 is 'pressed

inhibit prevents normal action of TUTOR feature described in tag.
Tag "erase" -- display is not erased when main unit is changed.
Tag "arrow" arrow is not displayed on panel.

* join attaches unit named in tag, to unit in which -join- command appears
(judging and regular)

judge alters previous judgment; -judge- is a regular. command

jump specifies unit to branch to immediately

lab specifies unit to proceed to if LAB key is pressed

labl specifies unit to proceed to if LAB1 is pressed

* match searches student response for occurrence of words listed in tag,
sets a variable and judges response

micro speCifies micro table

mode changes terminal from present mode to mode named in tag (write,
erase, rewrite)

modperm copies modperm list into setperm list

next specifies unit to proceed to when NEXT key is pressed

nextl specified' unit to proceed to if NEXT1 is pressed

* no judges any response "no"

* ok judges any response "ok"

pause causes PLATO to wait before continuing execution of unit

randp chooses a,random number from a field specified by -setperm-, and
stores it in variable, named in tag. The -randp- command causes -
sampling without replacement.

randu 2 argument tag: chooses an integer between 1 and the integer in
the second argument of the tag, and stores it in the variable named
in the first argument.
1 argument tag: chooses .a'fractional number between 0.0 and 1.0
and stores it in the variable named in the tag. The -randu- command
causes sampling with replacement.

indicates judging command, all non-starred commands are regular

13.3

rdraw draws figure which can be sized and rotated

remove removes a number from the modperm list

restart specifies the lesson and unit in which the student will be when

he returns to PLATO

rotate rotates sized writing. Tag is the number of degrees the writing
is to be rotated counter clockwise from the horizontal axis.

setperm sets up a number field from 1 to the number given in tag

_show- displays value of variable or expression named in tag

showa displays alphanumeric characters stored in variable named in tag

showe displays value of variable or expression in exponential format

showo displays value of variable or expression in octal (base 8) notation

showt displays value of variable or expression in a format suitable for
tables

size specifies size of writing. Size 0 is normal writing.

slide projects a slide on the panel

*specs specifies judging option;, and acts as a marker to be returned to
when judging state is complete

*store calculates'numerical value of student response and stores it in

variable named in tag

*storea stores alphanumeric student response in variable named in tag

*storen removes a numerical portion of a student response and stores the

result in variable named in tag

term allows branch to unit containing the -term- command when the student

presses TERM and types word which matches tag of -term- command

Unit identifies a section of a lesson; a unit name may be up to 8
characters long

vocabs specifies a vocabulary list for subsequent -concept- command

write puts text on the panel

writec conditional form of -write- command

*wrong specifies an incorrect student response

*wrongv specifies an incorrect numerical response, a tolerance (percent.
or absolute) is allowed

zero stores the value 0 in the variable named in the tag. The.2fargument
form zeros a block of consecutive variables beginning at the

variable named in the first argument and continuing for the number
of variables in the second argument.

* and $$ allow author, comments

* indicates judging commaqd, all non-starred commands are regular

'4 152

B.4

-specs- Options:

bumpshift capitals in the student's response are ignored

nookno "ok" or "no" are not written after judgment

noops mathematical operators are not allowed in student's response

okextra extra words in student's response are ignored

okspell student's response is judged "ok" even if it contains spelling
errors

Systems Reserved Words:

jcount number of characters in student's response

judged equals -1 if student'S response was judged "ok", 0 if response
matched -wrong- or -wrongv- tag, 1 if no match was made pr a
-no- was encountered

mode equals -1 if in erase mode, 0 if in rewrite mode, 1 if in
write mode

ntries number of attempts student has made at this arrow

opcnt number of mathematical operators in student's response

where coarse grid location of last panel activity

wherex fine grid x location of last panel activity

wherey fine grid y location of last panel activity

I.1

Index

ACCESS key 3.5, 4.2 cover design 9.12

"aids" 13.1 -data- 5.1, 5.6

animation 9.11 -datal- 5.1, 5.6

ansv- 6.3, 7.1, 12.3 -define- 12.5, 12.7

-answer- 1.3 dialogs 8.11

arguments 2.3 -do- 2.6, 4.1, 5.1, 7.3, 8.11, 11.1

-arrow- 1.3, 2.14, 6.7, 8.1

assignment arrow 3.2

-at- 1.2, 1.8, 2.14, 9.1, 9.6

attached units 2.6, 5.1, 5.6

audio 9.12

-back- 5.1, 6.11, 10.2

backl- 5.1, 10.2

- base- 10.2

base unit 5.2, 5.6,' 10.2

bit manipulation 12.5

bumpshift 1.4, 1.9, 1.11, 8.4

-calc- 3.1, 12.1

calcc- 12.1

calcs- 12.1

character grid 2.14, 9.2

character sets 9.9

-charset- 9.10.

charts 9-9

circle- 2.12

-circleb- 2.12

coarse grid 1.2, 3.8, 9.6

command 1.1

comments 2.4

-concept- 8.11

conditional branching 4.1, 5.5, 5.10,

6.11, 11.5

consultants 13:4

160

-draw- 2.3, 2.14, 3.8

drills 7.1 - 7.6

editing 1.5, 2.19, 3.10, Appendix B

embed (of show-type commands in
-write- command) 3.5, 7.1

-end- 5.2, 11.1, 10.4

-endarrow- 6.2, 6.7, 6.11

-erase- 2.8, 9.4

evaluation 13.4

-exact- 8.10

-exactc- 8.10

exercise A 1.10 - 1.18

exercise B 2.15 - 2.21

exercise C 3.10 3.13

exercise D 4.3 - 4.9

exercise E 5.8 - 5.11

exercise F 6.8 - 6.14

exercise topics (background) 1.10

extra words 1.4

fine grid 2.11, 2.14, 3.9, 9.6

-finish- .10.4

flags 5.8, 12.5

FONT key 9.10

function key 5.11, 11.6

functions 12.7

-goto- 5.1, 11.3

graphing 9.9

1.2

-help- 5.1, 5.8, 10.1

-helpl- 5.1

help sequences 5.2, 10.2

111.011 3.10

"id" (insert a display) 2.19

i.e.u. 3.3', 9.10. 9.11, 10.4

ignorable words 1.4

-inhibit- 9.4

initial entry unit 3.3, 9.10, 9.11,

"j count" 8;5

-join- 5.1, 7.3, 11.2'

-judge- 8.6

"judged" 8.7

judging commands 6.1, 8.1

judging copy 8.6, 8.9

judging process 1.6, 6.1, 6.4, 8.1, 8.6

judging state 6.1, 8:1

-jump- 5.1, 5.2, 6.7, 7.1, 8.3

-lab- 5.1

-labl- 5.1

. lesson errors 1.15

line drawn characterS 2.1

logical operators 12.4

main units 5.1, 5.6, 9.4

-match- 8.2, 8.6

-midrO7 9.11

microfiche 9.12,

-mode- 9.3, 9.11

"mode" 9.3

"noops" 6.5

"notes" 13.2

"ntries" 3.8, 4.3, 4.5, 7-1

numerical responses 6.3, 6.6, 8.9

-ok- 6.4

"okextra" 1.9, 8.1

"okspell" 1.4

"opcnt" 6.5

.4 operations (order of) 3.2

partial circles 2.12

-pause- 2.8, 6.11, 9.3

l!cin 11.6

random numbers 7.1

-randp- 7.3, 8.10, 12.3

-randu- 7.1

-rdraw- 9.6

regular commands 6.1, 8.1

regular state 6.1, 8.1

-remove- 7.4, 12.3

required words 1.5, 4.3

response comments 1.5, 1.8, 1.13

6.1, 6.10

response markup 1.3, 8.3, 8.10

-restart- 10.4

-rotate- 2.1, 9.6

router lessons 13.4

segment 12.5

sequencing 2.4

-setperm- 7.3, 9.10, 12.3

-modperm- 7.4, 12.7s,

-next- 2.5, 2.6, 4.2;5.1

-nextl- 5.1

-no- 4.3, 4.5, 4.8. 6.6

"nookno" 1.4, 6.10, 8.5

-show-

-showa-

-showe-

-showo-

-showt-

3.5,

12.1

12.1

12.1

3.5.

7.1,

12.1

12.1

1.3

- si. - 2.1, 9.6

skip 2.3.

-slide- 9.12

slides 9.12

specs- 1.4, 1.9, 6.5, 8.,1, 8.8

statement 1.1

-store- 6.6, 6.9, 8.9, 12.1

-storea- 12.1

-storen- 8.9

student data 13.4

student variables 3.1, 5.8, 12.1

synonyms 1.5, 8.3

systems reserved words' 3.5, 3.8,.3.9, 4.3,

4.5, 6.5, 7.1, 8.5, 8.7, 9.3

tag 1.1

- term- 1d.1

tolerance 6.3, 6.5

touch panel ',9.12

-unit- 1.1, 6.2

universal separator (in - vritec -) 4.2

variables 3.1, 5.8, 12.1

-vocabs- 8.11

"where" 3.5, 3.8

"wherex" 3.9

"wherey"

-write- 1.2, 1.8, 1.13,.9.1

-writec- 4.2, 7.4, 12.3

-wrong- 1.6-

-wrongv- 6.3, 6.1(1

"x" 4.1, 5.51 8.4, 9.3

-zero- 3.2

* 2.4

$$ 2.4

1 6

Checklist for using "Introduction to TUTOR" and "introtutor"

rTour

che-,k1 st
items to be read and exercises to be c,ap1eted

read chapter 1; pp 1.1 to 1.9

read Appendix A amd practice the sdCtngdftecttvaI -.t

read section 1 of "introtutor"

do exercise A; pp 1.10 to 1.18 (r. o maple lesson
A in "introtutor"'

read chapter 2; pp 2.1 to 2.14

read section 2 of "introtutor"

do exercise 4; pp 2.15 to 2.21

read chapter 3; pp 3.1 to 3.9

read section 3 of "introtutor"
.

do exercise C; pp 3.10 to 3:13

read chapter 4; pp 4.1 to 4.3

read section 4 of "introtutor"

do exercise D; pp 4.3 to 4.9

read chapter 5; pp 5.1,to 5.7

read section 5 of "introtutor"

do exercise Ei pp 5.8 to 5.11
*------

read chapter 6; pp 6.1 to 6.8 .

read section 6 of "introtutor"

do exercise F; pp 6.8 6.14
IM.4.=4.4.1+..

read chapter 7; pp 7t 7.7

read section 7 of "introtutot"

read cle. remaining cnapters of "Introduction to TUTOR"
t--

read ssti.:,-u 8 of "!ntrututor"

* "Intromtor" TUTOR lehson used in student mode.

3

4

4

44

1.11101.11MMUIIIIINOIMMIMM10.10111111110M111111101M111111111111111111111iiiiMillilliMillilliailliallilillil.11

